Ultraviolet-B radiation, water deficit and abscisic acid: a review of independent and interactive effects on grapevines

Abstract

Viticulture is present around the word in a large diversity of climates. The water availability in the soil and the quality of sunlight are two environmental factors that affect the fruit characteristics for winemaking. Ultraviolet (UV)-B radiation comprises a small fraction of sunlight that reaches the Earth’s surface, but has enough energy to cause large photobiological effects on higher plants. High UV-B increases metabolites with antioxidant properties as phenolic and volatile organic compounds in berries that improve oenological quality although affecting growth and fruit yield. Water restriction is a common cultural practice used in many wine regions to increase berry quality for winemaking and it is well documented that main effects are mediated by abscisic acid (ABA). Generally, ABA is a phytohormone that, besides to control stomatal aperture, regulates many physiological and biochemical processes of acclimation to adverse environmental conditions; and also controls grape berry maturation. Stress conditions and/or environmental signals generally increase ABA, and a promotive effect by UV-B has been found in grapevines. This review provides an overview of existing literature on the effects of UV-B radiation, moderate water deficit practices and sprayed ABA on grapevines (Vitis vinifera L.). The focus is on the physiological and biochemical aspects affecting growth, yield and quality for winemaking.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

ABA:

Abscisic acid

ORAC:

Oxygen radical absorbanse capacity

PAR:

Photosynthetic active radiation

UV:

Ultraviolet

UVAC:

UV-absorbing compounds

+UV-B:

Full UV-B treatment

−UV-B:

Filtered UV-B treatment

VOCs:

Volatile organic compounds

Ψs:

Stem water potential

References

  1. Acevedo E, Hsiao TC, Henderson DW (1971) Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol 48:631–636

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Alexieva V, Ivanov S, Sergiev I, Karanov E (2003) Interaction between stresses. Bulg J Plant Physiol 29:1–17

    Google Scholar 

  3. Alonso R, Berli FJ, Bottini R, Piccoli P (2015) Acclimation mechanisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines. Plant Physiol Biochem 91:56–60. doi:10.1016/j.plaphy.2015.03.011

    CAS  PubMed  Article  Google Scholar 

  4. Balint G, Reynolds AG (2013) Impact of exogenous abscisic acid on vine physiology and grape composition of Cabernet Sauvignon. Am J Enol Vitic 64(1):74–87. doi:10.5344/ajev.2012.12075

    CAS  Article  Google Scholar 

  5. Bandurska H, Niedziela J, Chadzinikolau T (2013) Separate and combined responses to water deficit and UV-B radiation. Plant Sci 213:98–105. doi:10.1016/j.plantsci.2013.09.003

    CAS  PubMed  Article  Google Scholar 

  6. Bartowsky EJ, Pretorius IS (2009) Microbial formation and modification of flavor and off-flavor compounds in wine. In Biology of microorganisms on grapes, in must and in wine. pp. 209–231. doi:10.1007/978-3-540-85463-0_11

  7. Berli FJ, Bottini R (2013) UV-B and abscisic acid effects on grape berry maturation and quality. J Berry Res 3:1–14. doi:10.3233/JBR-130047

    CAS  Google Scholar 

  8. Berli F, D’Angelo J, Cavagnaro B, Bottini R, Wuilloud R, Silva MF (2008) Phenolic composition in grape (Vitis vinifera L. cv. Malbec) ripened with different solar UV-B radiation levels by capillary zone electrophoresis. J Agric Food Chem 56(9):2892–2898. doi:10.1021/jf073421+

    CAS  PubMed  Article  Google Scholar 

  9. Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet- absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33(1):1–10. doi:10.1111/j.1365-3040.2009.02044.x

    CAS  PubMed  Google Scholar 

  10. Berli FJ, Fanzone M, Piccoli P, Bottini R (2011) Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. Increasing biosynthesis of berry skin polyphenols. J Agric Food Chem 59(9):4874–4884. doi:10.1021/jf200040z

    CAS  PubMed  Article  Google Scholar 

  11. Berli FJ, Alonso R, Bressan-Smith R, Bottini R (2013) UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiol Plantarum 149(1):127–140. doi:10.1111/ppl.12012

    CAS  Article  Google Scholar 

  12. Berli FJ, Alonso R, Beltrano J, Bottini R (2015) High-altitude solar UV-B and abscisic acid sprays increase grape berry antioxidant capacity. Am J Enol Vitic 66(1):65–72. doi:10.5344/ajev.2014.14067

    CAS  Article  Google Scholar 

  13. Bettaieb I, Zakhama N, Wannes WA, Kchouk ME, Marzouk B (2009) Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci Hort 120(2):271–275. doi:10.1016/j.scienta.2008.10.016

    CAS  Article  Google Scholar 

  14. Bilger W, Johnsen T, Schreiber U (2001) UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. J Exp Bot 52(363):2007–2014

    CAS  PubMed  Article  Google Scholar 

  15. Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112(2–3):119–123. doi:10.1016/j.fcr.2009.03.009

    Article  Google Scholar 

  16. Caldwell MM, Ballare CL, Bornman JF, Flint SD, Bjorn LO, Teramura AH, Kulandaivelu G, Tevini M (2003) Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photoch Photobio Sci 2(1):29–38

    CAS  Article  Google Scholar 

  17. Carbonell-Bejerano P, Diago M-P, Martínez-Abaigar J, Martínez-Zapater JM, Tardáguila J, Núñez-Olivera E (2014) Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biol 14:183. doi:10.1186/1471-2229-14-183

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Carvalho LC, Coito JL, Gonçalves EF, Chaves MM, Amâncio S (2015) Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. Plant Biol 18:101–111. doi:10.1111/plb.12410

    PubMed  Article  CAS  Google Scholar 

  19. Castellarin SD, Matthews MA, Gaspero G, Gambetta GA (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227(1):101–112. doi:10.1007/s00425-007-0598-8

    CAS  PubMed  Article  Google Scholar 

  20. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30(3):239–264. doi:10.1071/FP02076

    CAS  Article  Google Scholar 

  21. Chaves MM, Santos TP, Souza CR, Ortuño MF, Rodrigues ML, Lopes CM, Maroco JP, Pereira JS (2007) Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann Appl Biol 150(2):237–252. doi:10.1111/j.1744-7348.2006.00123.x

    Article  Google Scholar 

  22. Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105(5):661–676. doi:10.1093/aob/mcq030

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Choné X (2001) Stem water potential is a sensitive indicator of grapevine water status. Ann Bot 87:477–483. doi:10.1006/anbo.2000.1361

    Article  Google Scholar 

  24. Clavijo McCormick A, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17(5):303–310. doi:10.1016/j.tplants.2012.03.012

    CAS  PubMed  Article  Google Scholar 

  25. Cohen AC, Travaglia C, Bottini R, Piccoli P (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462. doi:10.1139/B09-023

    CAS  Article  Google Scholar 

  26. Creelman RA (1989) Abscisic acid physiology and biosynthesis in higher plants. Physiol Plantarum 75:131–136. doi:10.1111/j.1399-3054.1989.tb02074.x

    CAS  Article  Google Scholar 

  27. Davies C, Böttcher C (2009) Hormonal control of grape berry ripening. Grapevine Molecular Physiology and Biotechnology. Springer, Netherlands, pp 229–261

    Google Scholar 

  28. Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Mérillon JM, Cushman JC, Cramer GR (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genom 10:212. doi:10.1186/1471-2164-10-212

    Article  CAS  Google Scholar 

  29. Deluc LG, Decendit A, Papastamoulis Y, Mérillon JM, Cushman JC, Cramer GR (2011) Water deficit increases stilbene metabolism in Cabernet Sauvignon berries. J Agric Food Chem 59:289–297

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085–1097. doi:10.1105/tpc.7.7.1085

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Doupis G, Chartzoulakis K, Beis A, Patakas A (2011) Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. Aust J Grape Wine R 17(1):36–42. doi:10.1111/j.1755-0238.2010.00114.x

    CAS  Article  Google Scholar 

  32. Drilias P, Karabourniotis G, Levizou E, Nikolopoulos D, Petropoulou Y, Manetas Y (1997) The effects of enhanced UV-B radiation on the mediterranean evergreen sclerophyll Nerium oleander depend on the extent of summer precipitation. Aust J Plant Physiol 24(3):301–306. doi:10.1071/PP96105

    Article  Google Scholar 

  33. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440. doi:10.1080/07352680600899973

    CAS  Article  Google Scholar 

  34. Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198(1):16–32. doi:10.1111/nph.12145

    CAS  PubMed  Article  Google Scholar 

  35. Fedina I, Nedeva D, Georgieva K, Velitchkova M (2009) Methyl jasmonate counteract UV-B stress in barley seedlings. J Agron Crop Sci 195:204–212

    CAS  Article  Google Scholar 

  36. Ferrara G, Mazzeo A, Matarrese AMS, Pacucci C, Pacifico A, Gambacorta G, Faccia M, Trani A, Gallo V, Cafagna I et al (2013) Application of abscisic acid (S-ABA) to “Crimson Seedless” grape berries in a mediterranean climate: effects on color, chemical characteristics, metabolic profile, and S-ABA concentration. J Plant Growth Regul 32:491–505. doi:10.1007/s00344-012-9316-2

    CAS  Article  Google Scholar 

  37. Garde-Cerdán T, Lorenzo C, Carot JM, Esteve MD, Climent MD, Salinas MR (2010) Effects of composition, storage time, geographic origin and oak type on the accumulation of some volatile oak compounds and ethylphenols in wines. Food Chem 122(4):1076–1082. doi:10.1016/j.foodchem.2010.03.077

    Article  CAS  Google Scholar 

  38. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414. doi:10.1038/nchembio.2007.5

    CAS  PubMed  Article  Google Scholar 

  39. Gil M, Pontin M, Berli F, Bottini R, Piccoli P (2012) Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry 77:89–98. doi:10.1016/j.phytochem.2011.12.011

    CAS  PubMed  Article  Google Scholar 

  40. Gil M, Bottini R, Berli F, Pontin M, Silva MF, Piccoli P (2013) Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation. Phytochemistry 96:148–157. doi:10.1016/j.phytochem.2013.08.011

    CAS  PubMed  Article  Google Scholar 

  41. Gil M, Bottini R, Pontin M, Berli F, Salomon M, Piccoli P (2014) Solar UV-B radiation modifies the proportion of volatile organic compounds in flowers of field-grown grapevine (Vitis vinifera L.) cv. Malbec. Plant Growth Regul 74(2):193–197. doi:10.1007/s10725-014-9911-2

    CAS  Article  Google Scholar 

  42. Gregan SM, Wargent JJ, Liu L, Shinkle J, Hofmann R, Winefield C, Trought M, Jordan B (2012) Effects of solar ultraviolet radiation and canopy manipulation on the biochemical composition of Sauvignon Blanc grapes. Aust J Grape Wine Res 18:227–238. doi:10.1111/j.1755-0238.2012.00192.x

    CAS  Article  Google Scholar 

  43. Guilford JM, Pezzuto JM (2011) Wine and health: a review. Am J Enol Vitic 62(4):471–486. doi:10.5344/ajev.2011.11013

    CAS  Article  Google Scholar 

  44. Hamrouni I, Salah HB, Marzouk B (2001) Effects of water-deficit on lipids of safflower aerial parts. Phytochemistry 58(2):277–280. doi:10.1016/S0031-9422(01)00210-2

    CAS  PubMed  Article  Google Scholar 

  45. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet P, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci USA 110:6907–6912

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Hectors K, Van Oevelen S, Guisez Y, Prinsen E, Jansen MAK (2012) The phytohormone auxin is a component of the regulatory system that controls UV-mediated accumulation of flavonoids and UV-induced morphogenesis. Physiol Plantarum 145(4):594–603. doi:10.1111/j.1399-3054.2012.01590.x

    CAS  Article  Google Scholar 

  47. Iacono F, Buccella A, Peterlunger E (1998) Water stress and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines. Sci Hort 75(1–2):27–39. doi:10.1016/S0304-4238(98)00113-7

    Article  Google Scholar 

  48. Intrigliolo DS, Castel JR (2009) Response of grapevine cv. ‘Tempranillo’ to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrig Sci 28(2):113–125. doi:10.1007/s00271-009-0164-1

    Article  Google Scholar 

  49. Jansen MAK (2002) Ultraviolet-B radiation effects on plants: induction of morphogenic responses. Physiol Plantarum 116(3):423–429. doi:10.1034/j.1399-3054.2002.1160319.x

    CAS  Article  Google Scholar 

  50. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431. doi:10.1146/annurev.arplant.59.032607.092953

    CAS  PubMed  Article  Google Scholar 

  51. Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agr Forest Meteorol 120(1–4):191–218. doi:10.1016/j.agrformet.2003.08.015

    Article  Google Scholar 

  52. Keller CP, Stahlberg R, Barkawi LS, Cohen JD (2004) Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis. Plant Physiol 134(3):1217–1226. doi:10.1104/pp.103.032300

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Kennedy JA, Matthews MA, Waterhouse AL (2002) Effect of maturity and vine water status on grape skin and wine flavonoids. Am J Enol Vitic 53(4):268–274

    CAS  Google Scholar 

  54. Kolb CA, Käser MA, Kopecký J, Zotz G, Riederer M, Pfündel EE (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127(3):863–875. doi:10.1104/pp.127.3.863

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Koyama K, Sadamatsu K, Goto-Yamamoto N (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomic 10(3):367–381. doi:10.1007/s10142-009-0145-8

    CAS  Article  Google Scholar 

  56. Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N (2012) Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 78:54–64. doi:10.1016/j.phytochem.2012.02.026

    CAS  PubMed  Article  Google Scholar 

  57. Lacampagne S, Gagné S, Gény L (2010) Involvement of abscisic acid in controlling the proanthocyanidin biosynthesis pathway in grape skin: new elements regarding the regulation of tannin composition and leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities and expression. J Plant Growth Regul 29(1):81–90. doi:10.1007/s00344-009-9115-6

    CAS  Article  Google Scholar 

  58. Leeuwen C, Tregoat O, Choné X, Bois B, Pernet D, Gaudillére JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. How can it be assessed for vineyard management purposes. J Int Sci Vin 43(3):121–134

    Google Scholar 

  59. Lim C, Baek W, Jung J, Kim JH, Lee S (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16:15251–15270. doi:10.3390/ijms160715251

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Liu L, Gregan S, Winefield C, Jordan B (2014) From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ 1–15:905–919. doi:10.1111/pce.12349

    Google Scholar 

  61. Lovisolo C, Perrone I, Carra A, Ferrandino A, Flexas J, Medrano H, Schubert A (2010) Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Funct Plant Biol 37(2):98–116. doi:10.1071/FP09191

    CAS  Article  Google Scholar 

  62. Majer P, Hideg É (2012) Developmental stage is an important factor that determines the antioxidant responses of young and old grapevine leaves under UV irradiation in a green-house. Plant Physiol Biochem 50:15–23. doi:10.1016/j.plaphy.2011.09.018

    CAS  PubMed  Article  Google Scholar 

  63. Martínez-Lüscher J, Sanchez-Diaz M, Delrot S, Aguirreolea J, Pascual I, Gomes E (2014) Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation. Plant Cell Physiol 55:1925–1936. doi:10.1016/j.plantsci.2014.12.013

    PubMed  Article  Google Scholar 

  64. Martínez-Lüscher J, Morales F, Delrot S, Sánchez-Díaz M, Gomès E, Aguirreolea J, Pascual I (2015) Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions. Plant Sci 232:13–22. doi:10.1016/j.plantsci.2014.12.013

    PubMed  Article  CAS  Google Scholar 

  65. McKenzie R, Bodeker G, Scott G, Slusser J, Lantz K (2006) Geographical differences in erythemally-weighted UV measured at mid-latitude USDA sites. Photochem Photobiol Sci 5:343–352. doi:10.1039/B510943D

    CAS  PubMed  Article  Google Scholar 

  66. McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photoch Photobio Sci 6(3):218–231. doi:10.1039/b700017k

    CAS  Article  Google Scholar 

  67. Medrano H, Tomás M, Martorell S, Escalona JM, Pou A, Fuentes S, Flexas J, Bota J (2015) Improving water use efficiency of vineyards in semi-arid regions. Rev Agron Sustain Dev 35(2):499–517. doi:10.1007/s13593-014-0280-z

    Article  Google Scholar 

  68. Moreno D, Berli FJ, Piccoli PN, Bottini R (2011) Gibberellins and abscisic acid promote carbon allocation in roots and berries of grapevines. J Plant Growth Regul 30(2):220–228. doi:10.1007/s00344-010-9186-4

    CAS  Article  Google Scholar 

  69. Murcia G, Pontin M, Reinoso H, Baraldi R, Bertazza G, Gómez-Talquenca S, Bottini R, Piccoli PN (2015) ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Physiol Plantarum. doi:10.1111/ppl.12390

    Google Scholar 

  70. Niculcea M, López J, Sánchez-Díaz M, Carmen Antolín M (2014) Involvement of berry hormonal content in the response to pre- and post-veraison water deficit in different grapevine (Vitis vinifera L.) cultivars. Aust J Grape Wine R 20(2):281–291

    CAS  Article  Google Scholar 

  71. Núñez-Olivera E, Martínez-Abaigar J, Tomas R, Otero S, Arróniz-Crespo M (2006) Physiological effects of solar ultraviolet-B exclusion on two cultivars of Vitis vinifera L. from La Rioja, Spain. Am J Enol Vitic 57(4):441–448

    Google Scholar 

  72. Ojeda H, Deloire A, Carbonneau A (2001) Influence of water deficits on grape berry growth. Vitis 40(3):141–145

    Google Scholar 

  73. Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A (2002) Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz Am J Enol Vitic 53(4):261–267

    CAS  Google Scholar 

  74. Ou C, Du X, Shellie K, Ross C, Qian MC (2010) Volatile compounds and sensory attributes of wine from cv. Merlot (Vitis vinifera L.) grown under differential levels of water deficit with or without a kaolin-based, foliar reflectant particle film. J Agric Food Chem 58:12890–12898. doi:10.1021/jf102587x

    CAS  PubMed  Article  Google Scholar 

  75. Peppi MC, Fidelibus MW, Dokoozlian N (2006) Abscisic acid application timing and concentration affect firmness, pigmentation, and color of ‘flame seedless’ grapes. HortScience 41(6):1440–1445

    CAS  Google Scholar 

  76. Peppi MC, Fidelibus MW, Dokoozlian N (2007) Application timing and concentration of abscisic acid affect the quality of ‘Redglobe’ grapes. J Hortic Sci Biotech 82:304–310. doi:10.1080/14620316.2007.11512233

    CAS  Article  Google Scholar 

  77. Peppi MC, Walker MA, Fidelibus MW (2008) Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries. Vitis 47(1):11–14

    CAS  Google Scholar 

  78. Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181(3):219–229. doi:10.1016/j.plantsci.2011.05.009

    CAS  PubMed  Article  Google Scholar 

  79. Piazena H (1996) The effect of altitude upon the solar UV-B and UV-A irradiance in the tropical Chilean andes. Sol Energy 57(2):133–140. doi:10.1016/S0038-092X(96)00049-7

    Article  Google Scholar 

  80. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5(3):237–243. doi:10.1016/S1369-5266(02)00251-0

    CAS  PubMed  Article  Google Scholar 

  81. Pollard A, Wyn Jones RG (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144(3):291–298. doi:10.1007/BF00388772

    CAS  PubMed  Article  Google Scholar 

  82. Pontin M, Piccoli P, Francisco R, Bottini R, Martinez-Zapater JM, Lijavetzky D (2010) Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biol 10:224

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Quiroga AM, Berli FJ, Moreno D, Cavagnaro JB, Bottini R (2009) Abscisic acid sprays significantly increase yield per plant in vineyard-grown wine grape (Vitis vinifera L.) cv. Cabernet Sauvignon through increased berry set with no negative effects on anthocyanin content and total polyphenol index of both juice and wine. J Plant Growth Regul 28(1):28–35. doi:10.1007/s00344-008-9070-7

    CAS  Article  Google Scholar 

  84. Reyes LF, Cisneros-Zevallos L (2003) Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). J Agric Food Chem 51(18):5296–5300. doi:10.1021/jf034213u

    CAS  PubMed  Article  Google Scholar 

  85. Rizzini L, Favory J-J, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    CAS  PubMed  Article  Google Scholar 

  86. Robinson AL, Boss PK, Solomon PS, Trengove RD, Heymann H, Ebeler SE (2014) Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am J Enol Vitic 65:1–24. doi:10.5344/ajev.2013.12070

    Article  Google Scholar 

  87. Rodrigues M, Chaves M, Wendler R, David M, Quick W, Leegood R, Stitt M, Pereira J (1993) Osmotic adjustment in water stressed grapevine leaves in relation to carbon assimilation. Funct Plant Biol 20(3):309–321. doi:10.1071/PP9930309

    CAS  Google Scholar 

  88. Sansberro PA, Mroginski LA, Bottini R (2004) Foliar sprays with ABA promote growth of Ilex paraguariensis by alleviating diurnal water stress. Plant Growth Regul 42(2):105–111. doi:10.1023/B:GROW.0000017476.12491.02

    CAS  Article  Google Scholar 

  89. Santesteban LG, Miranda C, Royo JB (2011) Suitability of pre-dawn and stem water potential as indicators of vineyard water status in cv. Tempranillo Aust J Grape Wine R 17(1):43–51. doi:10.1111/j.1755-0238.2010.00116.x

    Article  Google Scholar 

  90. Saradhi PP, Alia Arora S, Prasad KVSK (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209(1):1–5. doi:10.1006/bbrc.1995.1461

    CAS  PubMed  Article  Google Scholar 

  91. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomic 2(6):282–291. doi:10.1046/j.1365-313X.2002.01359.x

    CAS  Article  Google Scholar 

  92. Shellie KC, Bowen P (2014) Isohydrodynamic behavior in deficit-irrigated Cabernet Sauvignon and Malbec and its relationship between yield and berry composition. Irrig Sci 32(2):87–97. doi:10.1007/s00271-013-0416-y

    Article  Google Scholar 

  93. Sidhu D, Lund J, Kotseridis Y, Saucier C (2015) Methoxypyrazine analysis and influence of viticultural and enological procedures on their levels in grapes, musts, and wines. Crit Rev Food Sci Nutr 55:485–502. doi:10.1080/10408398.2012.658587

    CAS  PubMed  Article  Google Scholar 

  94. Siebert TE, Wood C, Elsey GM, Pollnitz AP (2008) Determination of rotundone, the pepper aroma impact compound, in grapes and wine. J Agric Food Chem 56(10):3745–3748. doi:10.1021/jf800184t

    CAS  PubMed  Article  Google Scholar 

  95. Solovchenko A, Schmitz-Eiberger M (2003) Significance of skin flavonoids for UV-B-protection in apple fruits. J Exp Bot 54(389):1977–1984. doi:10.1093/jxb/erg199

    CAS  PubMed  Article  Google Scholar 

  96. Song J, Shellie KC, Wang H, Qian MC (2012) Influence of deficit irrigation and kaolin particle film on grape composition and volatile compounds in Merlot grape (Vitis vinifera L.). Food Chem 134(2):841–850. doi:10.1016/j.foodchem.2012.02.193

    CAS  PubMed  Article  Google Scholar 

  97. Travaglia C, Cohen AC, Reinoso H, Castillo C, Bottini R (2007) Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. J Plant Growth Regul 26(3):285–289. doi:10.1007/s00344-007-9018-3

    CAS  Article  Google Scholar 

  98. Travaglia C, Reinoso H, Bottini R (2009) Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop Pasture Sci 60(12):1131–1136. doi:10.1071/CP08396

    CAS  Article  Google Scholar 

  99. Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30(6):967–977. doi:10.1007/s10529-008-9639-z

    CAS  PubMed  Article  Google Scholar 

  100. Vaquero MJR, Alberto MR, de Nadra MCM (2007) Antibacterial effect of phenolic compounds from different wines. Food Control 18(2):93–101. doi:10.1016/j.foodcont.2005.08.010

    Article  CAS  Google Scholar 

  101. Wei A, Shibamoto T (2007) Antioxidant activities and volatile constituents of various essential oils. J Agric Food Chem 55(5):1737–1742. doi:10.1021/jf062959x

    CAS  PubMed  Article  Google Scholar 

  102. Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine R 15(3):195–204. doi:10.1111/j.1755-0238.2008.00045.x

    CAS  Article  Google Scholar 

  103. Zhang Y, Dami IE (2012) Foliar application of abscisic acid Increases freezing tolerance of field-grown Vitis vinifera Cabernet franc grapevines. Am J Enol Vitic 63(3):377–384. doi:10.5344/ajev.2012.12006

    CAS  Article  Google Scholar 

  104. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Alonso.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alonso, R., Berli, F.J., Piccoli, P. et al. Ultraviolet-B radiation, water deficit and abscisic acid: a review of independent and interactive effects on grapevines. Theor. Exp. Plant Physiol. 28, 11–22 (2016). https://doi.org/10.1007/s40626-016-0053-y

Download citation

Keywords

  • ABA
  • Drought
  • Secondary metabolism
  • UV-B
  • Vitis vinifera L