Skip to main content
Log in

Deletion of the single UreG urease activation gene in soybean NIL lines: characterization and pleiotropic effects

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

The soybean eu3-a mutant (formerly, eu3-e1) lacks all ureolytic activity. Eu3 encodes urease accessory (Ni insertion) protein, UreG. Eu3 (Glycine max v1.1 Glyma08g08970.1) is the only UreG-encoding gene in the soybean genome. Here we show that the eu3-a lesion is a 2.4 kb deletion, beginning 50 bp upstream of the transcription start, and covering 94 % of the deduced amino acid sequence of UreG, explaining the urease activity-null phenotype of eu3-a. We established near-isogenic lines (NILs), eu3-a versus Eu3, and confirmed a striking accumulation of endogenous urea in eu3-a and none in Eu3, and the greater resistance of eu3-a leaf discs to external urea. However, incubation of discs in light alleviated urea sensitivity in Eu3, apparently by providing C skeletons for urea-released NH3. Hence, urea, endogenous and exogenous, is apparently less toxic than urea-derived NH3. eu3-a and Eu3 plants, however, did not differ in seed Ni content, nor in pool sizes of metabolites that generate urea via arginine. The NILs differed in patterns of nodulation by Bradyrhizobium japonicum and by Bradyrhizobium elkanii. Ureases have been reported to be fungitoxic. However, eu3-a and Eu3 NIL seedlings were equally sensitive to the pathogenic Basidiomycete fungus, Rhizoctonia solani. Since eu3-a accumulates at least some apo-urease, we examined a specific anti-fungal role of the seed urease in seedlings of a second NIL pair, differing in the presence (Eu1) and absence (eu1-a) of the seed urease. Again, this second NIL pair exhibited equal sensitivity to R. solani. To our knowledge, we report only the second test of fungal resistance influenced by urease levels in intact plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bai C, Reilly CC, Wood BW (2006) Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol 140:433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker-Ritt AB, Carlini CR (2012) Fungitoxic and insecticidal plant polypeptides. Pept Sci 98:367–384

    Article  CAS  Google Scholar 

  • Bielesk RL, Turner NA (1966) Separation and estimation of amino acids in crude plant extracts by thin layer electrophoresis and chromatography. Anal Biochem 17:278–282

    Article  Google Scholar 

  • Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 544:142–152

    Article  CAS  PubMed  Google Scholar 

  • Brown PH, Welch RM, Cary EE (1987a) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PH, Welch RM, Cary EE, Checkai RT (1987b) Beneficial effects of nickel on plant growth. J Plant Nutr 10:2125–2135

    Article  CAS  Google Scholar 

  • Carlini CR, Polacco JC (2008) Toxic properties of urease. Crop Sci 48:1665–1672

    Article  CAS  Google Scholar 

  • Chilimba ADC, Young SD, Black CR, Rogerson KB, Ander EL, Watts M, Lammel J, Broadley MR (2011) Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Sci Rep 1:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Coskun D, Britto DT, Li M, Becker A, Kronzucker HJ (2013) Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. Plant Physiol 163:1859–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) A metalloenzyme. A simple biological role for nickel. J Am Chem Soc 97:4131–4133

    Article  CAS  PubMed  Google Scholar 

  • Eskew DL, Welch RM, Cary EE (1983) Nickel: an essential micronutrient for legumes and possibly all higher plants. Science 222:621–623

    Article  CAS  PubMed  Google Scholar 

  • Fabiano C, Tezotto T, Favarin JL, Polacco JC, Mazzafera P (2015) Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci 6:754

    Article  PubMed  PubMed Central  Google Scholar 

  • Freyermuth SK, Bacanamwo M, Polacco JC (2000) The soybean Eu3 gene encodes a Ni-binding protein necessary for urease activity. Plant J 21:53–60

    Article  CAS  PubMed  Google Scholar 

  • Goldraij A, Polacco JC (1999) Arginase is inoperative in developing soybean seeds. Plant Physiol 119:297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldraij A, Beamer LJ, Polacco JC (2003) Interallelic complementation at the ubiquitous urease coding locus of soybean. Plant Physiol 132:1801–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haden VR, Xiang J, Peng S, Bouman BAM, Visperas R, Ketterings QM, Hobbs P, Duxbury JM (2011) Relative effects of ammonia and nitrite on the germination and early growth of aerobic rice. J Plant Nutr Soil Sci 174:292–300

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil, vol 347. California Agriculture Experimental Station Circular, Berkeley

    Google Scholar 

  • Hungria M, Boddey LH, Santos MA, Vargas MAT (1998) Nitrogen fixation capacity and nodule occupancy by Bradyrhizobium japonicum and B. elkanii strains. Biol Fertil Soils 27:393–399

    Article  CAS  Google Scholar 

  • Karr DB, Waters JK, Suzuki F, Emerich DW (1984) Enzymes of the poly-β-hydroxybutyrate and citric acid cycles of Rhizobium japonicum bacteroids. Plant Physiol 75:1158–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloth RH, Polacco JC, Hymowitz T (1987) The inheritance of a urease-null trait in soybeans. Theor Appl Genet 73:410–418

    Article  CAS  PubMed  Google Scholar 

  • Kutman BY, Kutman UB, Cakmak I (2012) Nickel-enriched seed and externally supplied nickel improve growth and alleviate foliar urea damage in soybean. Plant Soil 363:61–75

    Article  Google Scholar 

  • Lenis J, Gillman J, Lee J, Shannon JG, Bilyeu K (2010) Soybean seed lipoxygenase genes: molecular characterization and development of molecular marker assays. Theor Appl Genet 120:1139–1149

    Article  CAS  PubMed  Google Scholar 

  • Martinelli AHS, Kappaun K, Ligabue-Braun R, Defferrari MS, Piovesan AR, Stanisçuaski F, Demartini DR, Dal Belo CA, Almeida CGM, Follmer C, Verli H, Carlini CR, Pasquali G (2014) Structure–function studies on jaburetox, a recombinant insecticidal peptide derived from jack bean (Canavalia ensiformis) urease. Biochim Biophys Acta Gen Subj 1840:935–944

    Article  CAS  Google Scholar 

  • Medeiros-Silva M, Franck WL, Borba MP, Pizzato SB, Strodtman KN, Emerich DW, Stacey G, Polacco JC, Carlini CR (2014) Soybean ureases, but not that of Bradyrhizobium japonicum, are involved in the process of soybean root nodulation. J Agric Food Chem 62:3517–3524

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Bothling LE, Polacco JC (1987) Mutational analysis of the embryo-specific urease locus of soybean. Mol Gen Genet 209:439–444

    Article  CAS  PubMed  Google Scholar 

  • Mokochinski JB, Soares DX, Bruns RE, Mazzafera P, Sawaya ACHF (2013) Optimization of extraction conditions of free amino acids in plants by factorial design. In: Congresso Brasileiro de Espectrometria de Massas. 7–11 December 2013, Campinas

  • Mulinari F, Becker-Ritt AB, Demartini DR, Ligabue-Braun R, Stanisçuaski F, Verli H, Fragoso RR, Schroeder EK, Carlini CR, Grossi-de-Sá MF (2011) Characterization of JBURE-IIb isoform of Canavalia ensiformis (L.) DC urease. Biochim Biophys Acta 12:1758–1768

    Article  Google Scholar 

  • Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS, Tripathi JK, Pareek A, Sopory SK, Singla-Pareek SL (2014) A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalaseI possesses a single active site and functions in abiotic stress response. Plant J 78:951–963

    Article  CAS  PubMed  Google Scholar 

  • Nelson RS, Streit L, Harper JE (1984) Biochemical characterization of nitrate and nitrite reduction in the wild-type and a nitrate reductase mutant of soybean. Physiol Plant 61:384–390

    Article  CAS  Google Scholar 

  • Nicholas JC, Harper JE, Hageman RH (1976) Nitrate reductase activity in soybeans (Glycine max [L.] Merr.): I. effects of light and temperature. Plant Physiol 58:731–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polacco JC, Freyermuth SK, Gerendás J, Cianzio SR (1999) Soybean genes involved in nickel insertion into urease. J Exp Bot 50:1149–1156

    Article  CAS  Google Scholar 

  • Polacco JC, Hyten DL, Medeiros-Silva M, Sleper DA, Bilyeu KD (2011) Mutational analysis of the major soybean UreF paralogue involved in urease activation. J Exp Bot 62:3599–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polacco JC, Mazzafera P, Tezotto T (2013) Opinion—nickel and urease in plants: still many knowledge gaps. Plant Sci 199–200:79–90

    Article  PubMed  Google Scholar 

  • Postal M, Martinelli AHS, Becker-Ritt AB, Ligabue-Braun R, Demartini DR, Ribeiro SFF, Pasquali G, Gomes VM, Carlini CR (2012) Antifungal properties of Canavalia ensiformis urease and derived peptides. Peptides 38:22–32

    Article  CAS  PubMed  Google Scholar 

  • Ryan SA, Harper JE (1983) Mutagenesis of soybeans. Soybean Genet Newslett 10:29–32

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Sega GA (1984) A review of the genetic effects of ethyl methanesulfonate. Mutat Res/Rev Gen Toxicol 134:113–142

    Article  CAS  Google Scholar 

  • Stebbins N, Holland MA, Cianzio SR, Polacco JC (1991) Genetic tests of the roles of the embryonic ureases of soybean. Plant Physiol 97:1004–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torisky RS, Griffin JD, Yenofsky RL, Polacco JC (1994) A single gene (Eu4) encodes the tissue-ubiquitous urease of soybean. Mol Gen Genet 242:404–414

    Article  CAS  PubMed  Google Scholar 

  • Wernitznig S, Adlassnig W, Sprocati AR, Turnau K, Neagoe A, Alisi C, Sassmann S, Nicoara A, Pinto V, Cremisini C, Lichtscheidl I (2014) Plant growth promotion by inoculation with selected bacterial strains versus mineral soil supplements. Environ Sci Pollut Res 21:6877–6887

    Article  CAS  Google Scholar 

  • Wiebke-Strohm B, Pasquali G, Margis-Pinheiro M, Bencke M, Bücker-Neto L, Becker-Ritt A, Martinelli AS, Rechenmacher C, Polacco J, Stolf R, Marcelino F, Abdelnoor R, Homrich M, Del Ponte E, Carlini C, De Carvalho MCG, Bodanese-Zanettini M (2012) Ubiquitous urease affects soybean susceptibility to fungi. Plant Mol Biol 79:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte C-P (2011) Urea metabolism in plants. Plant Sci 180:431–438

    Article  CAS  PubMed  Google Scholar 

  • Wood BW, Reilly CC, Nyezepir AP (2004) Mouse-ear of pecan: a nickel deficiency. HortScience 39:1238–1242

    CAS  Google Scholar 

  • Zhang JX, Xue AG, Cober ER, Morrison MJ, Zhang HJ, Zhang SZ, Gregorich E (2013) Prevalence, pathogenicity and cultivar resistance of Fusarium and Rhizoctonia species causing soybean root rot. Can J Plant Sci 93:221–236

    Article  Google Scholar 

Download references

Acknowledgments

TT and JCP thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Brazil) for doctoral (Grants 11/05928-6 and 11/22245-0) and visiting researcher fellowships (Grant 14/09730-4). PM thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Carmine Polacco.

Additional information

This paper is dedicated to the memory of Richard “Dick” Lawson Bernard, a paragon of collegiality and a boon to soybean genetics and breeding, worldwide.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tezotto, T., Souza, S.C.R., Mihail, J. et al. Deletion of the single UreG urease activation gene in soybean NIL lines: characterization and pleiotropic effects. Theor. Exp. Plant Physiol. 28, 307–320 (2016). https://doi.org/10.1007/s40626-016-0052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-016-0052-z

Keywords

Navigation