Allen E, Moing A, Ebbels TM, Maucourt M, Tomos AD, Rolin D, Hooks MA (2010) Correlation network analysis reveals a sequential reorganization of metabolic and transcriptional states during germination and gene-metabolite relationships in developing seedlings of Arabidopsis. BMC Sys Biol 4:62. doi:10.1186/1752-0509-4-62
Article
CAS
Google Scholar
Aragão VPM, Navarro BV, Passamani LZ, Macedo AF, Floh EIS, Silveira V, Santa-Catarina C (2015) Free amino acids, polyamines, soluble sugars and proteins during seed germination and early seedling growth of Cedrela fissilis Vellozo (Meliaceae), an endangered hardwood species from the Atlantic Forest in Brazil. Theor Exp Plant Physiol 27:157–169. doi:10.1007/s40626-015-0041-7
Article
Google Scholar
Astarita LV, Floh EIS, Handro W (2003a) Free amino acid, protein and water content changes associated with seed development in Araucaria angustifolia. Biol Plant 47:53–59
Article
CAS
Google Scholar
Astarita LV, Handro W, Floh EIS (2003b) Changes in polyamines content associated with zygotic embryogenesis in the Brazilian pine, Araucaria angustifolia (Bert.) O. Ktze Braz J Bot 26:163–168
Article
CAS
Google Scholar
Balbuena TS, Silveira V, Junqueira M, Dias LLC, Santa-Catarina C, Shevchenko A, Floh EIS (2009) Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian pine (Araucaria angustifolia). J Proteomics 72:337–352. doi:10.1016/j.jprot.2009.01.011
PubMed
Article
CAS
Google Scholar
Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066. doi:10.1105/tpc.9.7.1055
PubMed
PubMed Central
Article
CAS
Google Scholar
Bewley JD, Bradford K, Hilhorst H, Nonogaki H (2012) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York
Google Scholar
Borisjuk L, Walenta S, Weber H, Mueller-Klieser W, Wobus U (1998) High-resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: glucose as a possible developmental trigger. Plant J 15:583–591. doi:10.1046/j.1365-313X.1998.00214.x
Article
CAS
Google Scholar
Borisjuk L, Rolletschek H, Wobus U, Weber H (2003) Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. J Exp Bot 54:503–512. doi:10.1093/jxb/erg051
PubMed
Article
CAS
Google Scholar
Borisjuk L, Rolletschek H, Radchuk R, Weschke W, Wobus U, Weber H (2004) Seed development and differentiation: a role for metabolic regulation. Plant Biol 6:375–386. doi:10.1055/s-2004-817908
PubMed
Article
CAS
Google Scholar
Bove J, Jullien M, Grappin P (2001) Functional genomics in the study of seed germination. Genome Biol 3:reviews/1002-1005
Carvalho NM, Nakagawa J (2000) Sementes: ciências, tecnologia e produção, 4th edn. Funep, Jaboticabal
Google Scholar
Catusse J, Strub JM, Job C, Van Dorsselaer A, Job D (2008) Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proc Natl Acad Sci USA 105:10262–10267. doi:10.1073/pnas.0800585105
PubMed
PubMed Central
Article
Google Scholar
Dias LLC, Santa-Catarina C, Silveira V, Pieruzzi FP, Floh EIS (2009) Polyamines, amino acids, IAA and ABA contents during Ocotea catharinensis seed germination. Seed Sci Technol 37:42–51
Article
Google Scholar
Dias LLC, Balbuena TS, Silveira V, Santa-Catarina C, Shevchenko A, Floh EIS (2010) Two-dimensional gel electrophoretic protein profile analysis during seed development of Ocotea catharinensis: a recalcitrant seed species. Braz J Plant Physiol 22:23–33
Article
Google Scholar
Eveland AL, Jackson DP (2012) Sugars, signalling, and plant development. J Exp Bot 63:3367–3377. doi:10.1093/Jxb/Err379
PubMed
Article
CAS
Google Scholar
Galili G, Avin-Wittenberg T, Angelovici R, Fernie AR (2014) The role of photosynthesis and amino acid metabolism in the energy status during seed development. Front Plant Sci 5:447. doi:10.3389/fpls.2014.00447
PubMed
PubMed Central
Article
Google Scholar
Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2002) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol Plant 116:238–247. doi:10.1034/j.1399-3054.2002.1160214.x
PubMed
Article
CAS
Google Scholar
Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102. doi:10.1016/j.pbi.2004.11.003
PubMed
Article
CAS
Google Scholar
Havelange A, Lejeune P, Bernier G, KaurSawhney R, Galston AW (1996) Putrescine export from leaves in relation to floral transition in Sinapis alba. Physiol Plant 96:59–65
Article
CAS
Google Scholar
Holdsworth MJ, Bentsink L, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54. doi:10.1111/j.1469-8137.2008.02437.x
PubMed
Article
CAS
Google Scholar
Hu MY, Shi ZG, Zhang ZB, Zhang YJ, Li H (2012) Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul 68:177–188. doi:10.1007/s10725-012-9705-3
Article
CAS
Google Scholar
IUCN (2015) The IUCN red list of threatened species. International Union for Conservation of Nature (IUCN). http://www.iucnredlist.org. Accessed 23/05/2015
Joosen RVL et al (2013) Identifying genotype-by-environment interactions in the metabolism of germinating Arabidopsis seeds using generalized genetical genomics. Plant Physiol 162:553–566. doi:10.1104/pp.113.216176
PubMed
PubMed Central
Article
CAS
Google Scholar
Kamada H, Harada H (1984) Changes in endogenous amino-acid compositions during somatic embryogenesis in Daucus carota L. Plant Cell Physiol 25:27–38
CAS
Google Scholar
Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246
PubMed
Article
CAS
Google Scholar
Lacerda DR, Lemos JP, Acedo MDP, Lovato MB (2002) Molecular differentiation of two vicariant neotropical tree species, Plathymenia foliolosa and P. reticulata (Mimosoideae), inferred using RAPD markers. Plant Syst Evol 235:67–77. doi:10.1007/s00606-002-0227-8
Lam HM et al (1995) Use of arabidopsis mutants and genes to study amide amino-acid biosynthesis. Plant Cell 7:887–898
PubMed
PubMed Central
Article
CAS
Google Scholar
Lea PJ, Sodek L, Parry MAJ, Shewry R, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26. doi:10.1111/j.1744-7348.2006.00104.x
Article
CAS
Google Scholar
Matilla AJ (1996) Polyamines and seed germination. Seed Sci Res 6:81–93
Article
CAS
Google Scholar
Minocha R, Smith DR, Reeves C, Steele KD, Minocha SC (1999) Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol Plant 105:155–164. doi:10.1034/j.1399-3054.1999.105123.x
Article
CAS
Google Scholar
Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot 63:5003–5015. doi:10.1093/jxb/ers202
PubMed
Article
CAS
Google Scholar
Nonogaki H, Bassel GW, Bewley JD (2010) Germination-Still a mystery. Plant Sci 179:574–581. doi:10.1016/j.plantsci.2010.02.010
Article
CAS
Google Scholar
Obendorf RL, Gorecki RJ (2012) Soluble carbohydrates in legume seeds. Seed Sci Res 22:219–242. doi:10.1017/s0960258512000104
Article
CAS
Google Scholar
Penfield S, Rylott EL, Gilday AD, Graham S, Larson TR, Graham IA (2004) Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires phosphoenolpyruvate carboxykinase1. Plant Cell 16:2705–2718. doi:10.1105/tpc.104.024711
PubMed
PubMed Central
Article
CAS
Google Scholar
Pieruzzi FP, Dias LLC, Balbuena TS, Santa-Catarina C, dos Santos ALW, Floh EIS (2011) Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann Bot 108:337–345. doi:10.1093/aob/mcr133
PubMed
PubMed Central
Article
CAS
Google Scholar
Price J, Li TC, Kang SG, Na JK, Jang JC (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438. doi:10.1104/pp.103.020347
PubMed
PubMed Central
Article
CAS
Google Scholar
Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism—biochemical and molecular-genetics. Plant Cell 7:921–934
PubMed
PubMed Central
Article
CAS
Google Scholar
Rolston MP (1978) Water impermeable seed dormancy. Bot Rev 44:365–396. doi:10.1007/bf02957854
Article
CAS
Google Scholar
Rosental L, Nonogaki H, Fait A (2014) Activation and regulation of primary metabolism during seed germination. Seed Sci Res 24:1–15. doi:10.1017/s0960258513000391
Article
CAS
Google Scholar
Santa-Catarina C, Maciel SC, Pedrotti EL (2001) In vitro germination and somatic embryogenesis from immature embryos of “canela sassafrás” (Ocotea odorifera Mez). Rev Bras Bot 24:501–510
Article
Google Scholar
Santa-Catarina C, Silveira V, Balbuena TS, Viana AM, Estelita MEM, Handro W, Floh EIS (2006) IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of Ocotea catharinensis. Plant Growth Regul 49:237–247. doi:10.1007/s10725-006-9129-z
Silveira V, Balbuena TS, Santa-Catarina C, Floh EIS, Guerra MP, Handro W (2004) Biochemical changes during seed development in Pinus taeda L. Plant Growth Regul 44:147–156. doi:10.1023/B:GROW.0000049410.63154.ed
Article
CAS
Google Scholar
Smeekens S, Ma JK, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279. doi:10.1016/j.pbi.2009.12.002
PubMed
Article
CAS
Google Scholar
Smykal P, Vernoud V, Blair MW, Soukup A, Thompson RD (2014) The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci 5:351. doi:10.3389/fpls.2014.00351
PubMed
PubMed Central
Google Scholar
Sreenivasulu N et al (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758. doi:10.1104/pp.107.111781
PubMed
PubMed Central
Article
CAS
Google Scholar
Tegeder M (2012) Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol 15:315–321. doi:10.1016/j.pbi.2012.02.001
PubMed
Article
CAS
Google Scholar
Tiburcio AF, Altabella T, Bitrian M, Alcazar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18. doi:10.1007/s00425-014-2055-9
PubMed
Article
CAS
Google Scholar
Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis areb essential for seed development. FEBS Lett 579:1557–1564. doi:10.1016/j.febslet.2005.01.048
PubMed
Article
CAS
Google Scholar
Von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057. doi:10.1105/tpc.7.7.1039
Article
Google Scholar
Weitbrecht K, Muller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309. doi:10.1093/Jxb/Err030
PubMed
Article
CAS
Google Scholar
Yang RQ, Chen H, Gu ZX (2011) Factors influencing diamine oxidase activity and gamma-aminobutyric acid content of fava bean (Vicia faba L.) during germination. J Agric Food Chem 59:11616–11620. doi:10.1021/jf202645p
PubMed
Article
CAS
Google Scholar
Yang RQ, Guo QH, Gu ZX (2013) GABA shunt and polyamine degradation pathway on gamma-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia. Food Chem 136:152–159. doi:10.1016/j.foodchem.2012.08.008
PubMed
Article
CAS
Google Scholar