Skip to main content

Free amino acids, polyamines, soluble sugars and proteins during seed germination and early seedling growth of Cedrela fissilis Vellozo (Meliaceae), an endangered hardwood species from the Atlantic Forest in Brazil

Abstract

Germination, one of the earliest events in the plant life cycle, is a complex process in which the seed must physically recover from maturation drying, resume a sustained metabolic intensity, complete essential cellular events that allow for embryo emergence and prepare for subsequent seedling growth. Among the biochemical changes, compounds such as amino acids, proteins, soluble sugars and polyamines (PAs) presented relevant roles during seed development and germination. The aim of this work was to study the alterations in the content of free amino acids, PAs, soluble sugars and proteins during germination of Cedrela fissilis Vellozo (Meliaceae). The content of amino acids, soluble sugars and PAs were determined by high-performance liquid chromatography, and the soluble protein in ethanol content was quantified using a 2-D Quant Kit. A triphasic pattern of germination was observed, and germination was completed with radicle protrusion on day seven of incubation. A significant decrease in the soluble proteins in ethanol and increase in the total free amino acid content during germination (5–7 days) suggests that amino acids might be provided by the mobilization of stored proteins in mature seeds. Among soluble sugars, sucrose presented the highest content in mature seeds decreasing significantly during germination, whereas glucose and fructose were only detected in seedlings, suggesting that the degradation of sucrose to these monosaccharides is important for seedling growth. Endogenous free spermidine (Spd) and spermine (Spm) are significantly mobilized during germination, while the PA ratio [Put/(Spd + Spm)] significantly increased in seedlings, due to the significant increase in putrescine (Put) contents, which is involved with cell division for seedling growth. Our results revealed changes in the contents and forms of the studied compounds, suggesting the involvement of these biomolecules in C. fissilis seed germination and early seedling growth. The results provide additional data on the biochemical and physiological changes that occur during seed germination, particularly in endangered hardwood species from Brazilian Atlantic Forest.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ABA:

Abscisic acid

ANOVA:

Analysis of variance

DAO:

Diamine oxidase

DM:

Dry matter

FM:

Fresh matter

GABA:

γ-Aminobutyric acid

HPLC:

High performance liquid chromatography

OPA:

o-Phthaldialdehyde

PA:

Polyamine

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

WC:

Water content

References

  • Álcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with functions in planta biotic stress tolerance. Planta 231:1237–1249

    PubMed  Article  Google Scholar 

  • Alhadi FA, Al-Asbahi AAS, Alhammadi ASA, Abdullah QAA (2012) The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni pomegranates. J Stress Physiol Biochem 8:114–137

    Google Scholar 

  • Astarita LV, Handro W, Floh EIS (2003) Changes in polyamines content associated with zygotic embryogenesis in the Brazilian pine, Araucaria angustifolia (Bert.) O. Ktze. Rev Bras Bot 26:163–168

    CAS  Article  Google Scholar 

  • Azevedo RA, Lancien M, Lea MPJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162

    CAS  PubMed  Article  Google Scholar 

  • Balbuena TS, Silveira V, Junqueira M, Dias LLC, Santa-Catarina C, Shevchenko A, Floh EIS (2009) Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian Pine (Araucaria angustifolia). J Prot 72:337–352

    CAS  Article  Google Scholar 

  • Baron K, Stasolla C (2008) The role of polyamines during in vivo and in vitro development. In Vitro Cell Dev Biol Plant 44:383–395

    Article  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  • Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125(4):21–39

    Article  Google Scholar 

  • Booz MR, Kerbauy GB, Guerra MP, Pescador P (2009) The role of γ-aminobutyric acid (Gaba) in somatic embryogenesis of Acca sellowiana Berg. (Myrtaceae). Braz J Plant Physiol 21(4):271–280

    Article  Google Scholar 

  • Borek S, Ratajczak W, Ratajczak L (2006) Ultrastructural and enzymatic research on the role of sucrose in mobilization of storage lipids in germinating yellow lupine seeds. Plant Sci 170:441–452

    CAS  Article  Google Scholar 

  • Borisjuk L, Rolletschek H, Radchuk R, Weschke W, Wobus U, Weber H (2004) Seed development and differentiation: a role for metabolic regulation. Plant Biol 6:375–386

    CAS  PubMed  Article  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    CAS  Article  Google Scholar 

  • Bove J, Jullien M, Grappin P (2001) Functional genomics in the study of seed germination. Genome Biol 3:1002.1–1002.5

    Article  Google Scholar 

  • Cai G, Sobieszczuk-Nowicka E, Aloisi I, Fattorini L, Serafini-Fracassini D, Del Duca S (2015) Polyamines are common players in different facets of plant programmed cell death. Amino Acids 47:27–44

    CAS  PubMed  Article  Google Scholar 

  • Cao DD, Hua J, Zhua SJ, Hua WM, Knapp A (2010) Relationship between changes in endogenous polyamines and seed quality during development of sh2 sweet corn (Zea mays L.) seed. Sci Hortic 123:301–307

    CAS  Article  Google Scholar 

  • Carrijo LC, Borges EEL, Pontes CA, Lopes MR, Brune A (2010) α-Galactosidase activity and carbohydrate mobilization in seeds of Dalbergia nigra (Vell.) Alemão ex Benth.—Fabaceae (Brasilian Rosewood) during germination. Cerne 16:283–289

    Article  Google Scholar 

  • Carvalho PER (2003) Espécies arbóreas brasileiras. Colombo, Brasilia

    Google Scholar 

  • Carvalho LR, Silva EAA, Davide AC (2006) Storage behaviour of forest seeds. Rev Bras Sementes 28:15–25

    Article  Google Scholar 

  • Catusse J, Job C, Job D (2008) Transcriptome and proteome wide analyses of seed germination. C R Biol 331:815–822

    CAS  PubMed  Article  Google Scholar 

  • Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA 95:4784–4788

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Dantas B, Corrreia J, Marinho L, Aragão C (2008) Biochemical changes during imbibition of Caesalpinia pyramidalis Tul. seeds. Rev Bras Sementes 30:221–227

    Article  Google Scholar 

  • Dias LLC, Santa-Catarina C, Silveira V, Pieruzzi FP, Floh EIS (2009) Polyamines, aminoacids, IAA and ABA contents during Ocotea catharinensis seed germination. Seed Sci Technol 37:42–51

    Article  Google Scholar 

  • Donohue K, Casas RR, Burghardt L, Kovach K, Willis CG (2010) Germination, postgermination, adaptation, and species ecological ranges. Annu Rev Ecol Evol Syst 41:293–319

    Article  Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signaling, and plant development. J Exp Bot 63:3367–3377

    CAS  PubMed  Article  Google Scholar 

  • Ferreira CS, Piedade MTF, Tine MAS, Rossatto DR, Parolin P, Buckeridge MS (2009) The role of carbohydrates in seed germination and seedling establishment of Himatanthus sucuuba, an Amazonian tree with populations adapted to flooded and non-flooded conditions. Ann Bot 104:1111–1119

    CAS  Article  Google Scholar 

  • Filson PB, Dawson-Andoh BE (2009) Characterization of sugar from model and enzyme-mediated pulp hydrolyzates using high-performance liquid chromatography coupled to evaporative light scattering detection. Bioresour Technol 100:6661–6664

    CAS  PubMed  Article  Google Scholar 

  • Focks N, Benning C (1998) Wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2002) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Biol Plant 116:238–247

    CAS  Google Scholar 

  • Ghelis T, Bolbach G, Clodic G, Habricot Y, Miginiac E, Sotta B, Jeannette E (2008) Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells. Plant Physiol 148:1668–1680

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Gibson S (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    CAS  PubMed  Article  Google Scholar 

  • Hu M, Shi Z, Zhang Z, Zhang Y, Li H (2012) Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul 68:177–188

    CAS  Article  Google Scholar 

  • International Union for Conservation of Nature (2014) The IUCN red list of threatened species. http://www.iucnredlist.org. Accessed 28 April 2014

  • Jander G, Joshi V (2010) Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. Mol Plant 3:54–65

    CAS  PubMed  Article  Google Scholar 

  • Joshi V, Laubengayer KM, Schauer KM, Fernie A, Jander G (2006) Two Arabidopsis threonine aldolases are non-redundant and compete with threonine deaminase for a common substrate pool. Plant Cell 18:3564–3575

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Kamada H, Harada H (1984) Changes in endogenous amino acids compositions during somatic embryogenesis in Daucus carota L. Plant Cell Physiol 25:27–38

    CAS  Google Scholar 

  • Kang JH, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid–isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Kim W, Okita T (1988) Nucleotide and primary sequence of a major rice prolamine. FEBS Lett 231:308–310

    CAS  PubMed  Article  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    CAS  PubMed  Article  Google Scholar 

  • Krasuska U, Ciacka K, Bogatek R, Gniazdowska A (2014) Polyamines and nitric oxide link in regulation of dormancy removal and germination of apple (Malus domestica Borkh.) embryos. J Plant Growth Regul 33:590–601

    CAS  Article  Google Scholar 

  • Krishnan H, White J (1995) Morphometric analysis of rice seed protein bodies (implication for a significant contribution of prolamine to the total protein content of rice endosperm). Plant Physiol 109:1491–1495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuo TM, Van Middlesworth JF, Wolf WJ (1998) Content of raffinose oligosaccharides and sucrose in various plant seeds. J Agric Food Chem 36:32–36

    Article  Google Scholar 

  • Kusano T, Berberich T, Tadeda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    CAS  PubMed  Article  Google Scholar 

  • Li P, Wind JJ, Shi X, Zhang H, Hanson J, Smeekens SC, Teng S (2011) Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain. Proc Natl Acad Sci USA 108:3436–3441

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Maki H, Ando S, Kodama H, Komamine A (1991) Polyamines and the cell cycle of Catharanthus roseus cells in culture. Plant Physiol 96:1008–1013

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Matilla AJ (1996) Polyamines and seed germination. Seed Sci Res 6:81–93

    CAS  Article  Google Scholar 

  • Mirza JI, Bagni N (1991) Effects of exogenous polyamines and difluoromethylornithine on seed germination and root growth of Arabidopsis thaliana. Plant Growth Regul 10:163–168

    CAS  Article  Google Scholar 

  • Mitsukawa N, Konishi R, Kidzu K, Ohtsuki K, Masumura T, Tanaka K (1999) Amino acid sequencing and cDNA cloning of rice seed storage proteins, the 13 kDa prolamins, extracted from type I protein bodies. Plant Biotechnol 16:103–113

    CAS  Article  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination—still a mystery. Plant Sci 179:574–578

    CAS  Article  Google Scholar 

  • Obendorf RL (1997) Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Sci Res 7:63–74

    CAS  Article  Google Scholar 

  • Obroucheva NV, Lityagina SV, Richter A (2006) Dynamics of carbohydrates in the embryo axes of horse chestnut seeds during their transition from dormancy to germination. Russ J Plant Physiol 56:768–778

    Article  Google Scholar 

  • Oliveira IC, Brenner E, Chiu J, Hsieh MH, Kouranov A, Lam HM, Shin MJ, Coruzzi G (2001) Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway. Braz J Med Biol 34:567–575

    CAS  Google Scholar 

  • Onomo PF, Niemenak N, Ndoumou DO, Lieberei R (2010) Change in amino acids content during germination and seedling growth of Cola sp. Afr J Biotechnol 9:5632–5642

    Google Scholar 

  • Pastorini LH, Bacarin MA, Trevizol FC, Bervald CMP, Fernandes HS (2003) Production and non-structural carbohydrates content in potato tubers obtained in two planting times. Hort Bras 21:660–665

    Article  Google Scholar 

  • Penfield S, Graham S, Graham I (2005) Storage reserve mobilization in germinating oil seeds: Arabidopsis as a model system. Biochem Soc Trans 33:380–383

    CAS  PubMed  Article  Google Scholar 

  • Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose-family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci Res 11:185–197

    CAS  Google Scholar 

  • Pieruzzi FP, Dias LLC, Balbuena TS, Santa-Catarina C, Santos ALW, Floh EIS (2011) Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann Bot 108:337–345

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Price J, Li TC, Kang SG, Na JK, Jang JC (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Puga-Hermida MI, Gallardo M, Rodriguez-Gacio MC, Matilla AJ (2006) Polyamine contents, ethylene synthesis, and BrACO2 expression during turnip germination. Biol Plant 50:574–580

    CAS  Article  Google Scholar 

  • Rocha M, Licausi F, Araujo W, Nunes-Nesi A, Sodek L, Fernie AR, Van Dongen JT (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine amino transferase during hypoxia induced by water logging of Lotus japonicus. Plant Physiol 152:1501–1513

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Rodriguez C, Frias J, Vidal-Valverde C, Hernandez A (2008) Correlation between some nitrogen fractions, lysine, histidine, tyrosine and ornithine contents during the germination of peas, beans, and lentils. Food Chem 108:245–252

    CAS  Article  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved novel mechanisms. Annu Rev Plant Biol 57:675–709

    CAS  PubMed  Article  Google Scholar 

  • Santa-Catarina C, SdaC Maciel, Pedrotti EL (2001) In vitro germination and somatic embryogenesis from immature embryos of “canela sassafrás” (Ocotea odorifera Mez). Rev Bras Bot 24:501–510

    Article  Google Scholar 

  • Santa-Catarina C, Silveira V, Balbuena TS, Maranhão MEE, Handro W, Floh EIS (2006) IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of Ocotea catharinensis. Plant Growth Regul 49:237–247

    CAS  Article  Google Scholar 

  • Satya-Naraian V, Nair PM (1990) Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry 29:367–375

    Article  Google Scholar 

  • Shoeb F, Yadav JS, Bajaj S, Rajam MV (2001) Polyamines as biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice. Plant Sci 160:1229–1235

  • Shotwell M, Larkins B (1989) The molecular biology and biochemistry of seed storage proteins. In: Marcus A (ed) The biochemistry of plants, vol 15. Academic Press, San Diego, pp 297–345

    Google Scholar 

  • Sinska I, Lewandowska U (2006) Polyamines and ethylene in the removal of embryonal dormancy in apple seeds. Physiol Plant 81:59–64

    Article  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279

    CAS  PubMed  Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman and Co, New York

    Google Scholar 

  • Tahir M, Vandenberg A, Chibbar RN (2011) Influence of environment on seed soluble carbohydrates in selected lentil cultivars. J Food Compos Anal 24:596–602

    CAS  Article  Google Scholar 

  • Tan-Wilson AL, Wilson KA (2012) Mobilization of seed protein reserves. Physiol Plant 145:140–153

    CAS  PubMed  Article  Google Scholar 

  • Yang R, Chen H, Gu Z (2011) Factors influencing diamine oxidase activity and γ-aminobutyric acid content of fava bean (Vicia faba L.) during germination. J Agric Food Chem 59:11616–11620

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the State of Rio de Janeiro Research Foundation—FAPERJ (Procs. E-26.110.846/2010, E-26/110.390/2012, E26/111.389-2012, E26/102.989/2012 and E26/010.001507/2014) and National Council of Scientific and Technological Development (Procs. 476465/2011-7, 305645/2013-7 and 444453/2014-8). The scholarships were supported by the FAPERJ to BVN and by the Coordination for the Improvement of Higher Education Personnel (CAPES) to VPMA and LZP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudete Santa-Catarina.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aragão, V.P.M., Navarro, B.V., Passamani, L.Z. et al. Free amino acids, polyamines, soluble sugars and proteins during seed germination and early seedling growth of Cedrela fissilis Vellozo (Meliaceae), an endangered hardwood species from the Atlantic Forest in Brazil. Theor. Exp. Plant Physiol. 27, 157–169 (2015). https://doi.org/10.1007/s40626-015-0041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-015-0041-7

Keywords

  • Atlantic Forest
  • Biomolecules
  • Endangered species
  • Cedar
  • Wood species