Skip to main content
Log in

Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

In this study, the most commonly used herbicide, glyphosate, was investigated for its genotoxic effects on the genome of Triticum aestivum. Five different concentrations of the herbicide were used, and alterations to DNA were measured quantitatively based on their RAPD (Randomly Amplified Polymorphic DNA) profiles. The genomic template stability (GTS%) at each concentration was evaluated, and a decrease was observed with increasing glyphosate concentration. Thus the highest concentration was concluded to be the most effective for causing alteration to DNA. Additionally, the coupled restriction enzyme digestion-random amplification (CRED-RA) technique was used to determine an epigenetic mechanism, e.g. DNA methylation. The polymorphic percentages of all concentration were calculated after herbicide applications. When in glyphosate doses compared with control group, all applications of glyphosate observed to consist of methylation. The methylation levels range from 28.3 to 73.9 % (DNA hypermethylation). In conclusion, based on the RAPD and CRED-RA results, glyphosate causes DNA alterations and methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aina R, Sgorbati S, Santagostino A, Labra M, Citterio S (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plantarum 121:472–480

    Article  CAS  Google Scholar 

  • Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay to determine DNA alterations, repair and transgenerational effects in B(a)P exposed Daphnia magna. Mutat Res 552:125–140

    Article  Google Scholar 

  • Atienzar FA, Conradi M, Evenden AJ, Jha AN, Depledge MH (1999) Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo(a)pyrene. Environ Toxicol Chem 18(10):2275–2282

  • Atienzar FA, Cordi B, Donkin ME, Evenden AJ, Jha AN, Depledge MH (2000) Comparison of ultravioletinduced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmata. Aquat Toxicol 50:1–12

    Article  CAS  PubMed  Google Scholar 

  • Bhatti MA, Al-Khatib K, Felsot AS, Parker R, Kadir S (1995) Effects of simulated chlorsulfuron drift on fruit yield and quality of sweet cherries (Prunus avium L.). Environ Toxicol Chem 14:537–544

    CAS  Google Scholar 

  • Borlaug NE (2000) Ending world hunger: the promise of biotechnology and the threat of antiscience zealotry. Plant Physiol 124(2):487–490

  • Boutin C, Lee HB, Peart ET, Batchelor PS, Maguire RJ (2000) Effects of the sulfonylurea herbicide metsulfuron-methyl on growth and reproduction of five wetland and terrestrial plant species. Environ Toxicol Chem 19:2532–2541

    Article  CAS  Google Scholar 

  • Cai Q, Guy CL, Moore GA (1996) Detection of cytosine methylation and mapping of a gene influencing cytosine methylation in the genome of Citrus. Genome 39:235–242

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Gao X, Liu J, Kimatu JN, Geng S et al (2011) Methylation sensitive amplified polymorphism (MSAP) reveals that alkali stress triggers more DNA hypomethylation levels in cotton (Gossypium hirsutum L.) roots than salt stres. Afr J Biotechnol 10:18971–18980

    CAS  Google Scholar 

  • Cenkci S, Cigerci IH, Yıldız M, Ozay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473

    Article  CAS  Google Scholar 

  • Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89

    Article  CAS  PubMed  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  CAS  PubMed  Google Scholar 

  • Conners DE, Black MC (2004) Evaluation of lethality and genotoxicity in the freshwater mussel Utterbackia imbecillis (Bivalvia:Unionidae) exposed singly and in combination to chemicals used in lawn care. Arch Environ Contam Toxicol 46:362–371

    CAS  PubMed  Google Scholar 

  • Demeulemeester MAC, Stallen NV, Proft ME (1999) Degree of DNA methylation in chico ~7 (Cichorium intybus L.): influence of plant age and vernalization. Plant Sci 142:101–108

    Article  CAS  Google Scholar 

  • Duke SO, Wedge CE, Cerdeira AL, Matallo MB (2007) Herbicide effects on plant disease. Outlooks Pest Manag 18:36–40

    Article  CAS  Google Scholar 

  • Erturk FA, Agar G, Arslan E, Nardemir G, Sahin Z (2014) Determination of genomic instability and DNA methylation effects of Cr on maize (Zea mays L.) using RAPD and CRED-RA analysis. Acta Physıologıae Plantarum 36:1529–1537

    Article  CAS  Google Scholar 

  • Finnegan EJ, Genger RK, Peacock WJ, Dennis ES (1998) DNA methylation in plants. Annu Rev Plant Physio Mol Bio 49:223–247

    Article  CAS  Google Scholar 

  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global pesticide. American Chemical Society, Washington, DC, pp 653–697

    Google Scholar 

  • Gianessi L, Reigner N (2006) Pesticides use in us crop production with comparison to 1992 and 1997 fungicides and herbicides, the value of herbicides in U.S. Crop Production Update, CropLife Foundation, Brussels

    Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for roundup herbicide. Rev Environ Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Gronwald JW (1991) Lipid biosynthesis inhibitors. Weed Sci 39:435–449

    CAS  Google Scholar 

  • Kishore GM, Shah DM (1988) Amino-acid biosynthesis inhibitors as herbicides. Ann Rev Biochem 57:627–663

    Article  CAS  PubMed  Google Scholar 

  • Koller VJ, Furhacker M, Nersesyan A, Misik M, Eisenbauer M, Knasmuller S (2012) Cytotoxic and DNA-damaging properties of glyphosate and roundup in human-derived buccal epithelial cells. Arch Toxicol 86:805–813

    Article  CAS  PubMed  Google Scholar 

  • Kolpin DW, Thurman EM, Linhart SM (1998) The environmental occurrence of herbicides: the importance of degradates in ground water. Arch Environ Contam Toxicol 35:385–390

    Article  CAS  PubMed  Google Scholar 

  • Kovarik A, Koukalova B, Bezdek M, Opkinny Z (1997) Hypermethylation of tobacco heterochromatic toci in response to osmotic stress. Theor Appl Genet 95:301

    Article  Google Scholar 

  • Labra M, Vannini C, Sala F, Bracale M (2002) Methylation changes in specific sequences in response to water deficit. Plant Biosyst 136(3):269–276

    Article  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP) a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Liu W, Yang YS, Zhou Q, Xie L, Li P et al (2007) Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Manas F, Peralta L, Raviolo J et al (2008) Genotoxicity of AMPA, the environmental metabolite of glyphosate, assessed by the Comet assay and cytogenetic tests. Ecotoxicol Environ Saf 72:834–837

    Article  PubMed  Google Scholar 

  • Mitsutake K, Iwamura H, Shimizu R, Fujita T (1986) Quantitative structure-activity relationship of photosystem II inhibitors in chloroplasts and its link to herbicidal action. J Agric Food Chem 34:725–732

    Article  CAS  Google Scholar 

  • Pfleeger T, Blakeley-Smith M, King G, Lee EH, Plocher M et al (2012) The effects of glyphosate and aminopyralid on a multi-species plant field trial. Ecotoxicology 21:1771–1787

    Article  CAS  PubMed  Google Scholar 

  • Poletta GL, Larriera A, Kleinsorge E, Mudry MD (2009) Genotoxicity of the herbicide formulation Roundup (glyphosate) in broad-snouted caiman (Caiman latirostris) evidenced by the Comet assay and the Micronucleus test. Mutat Res 672:95–102

    Article  CAS  PubMed  Google Scholar 

  • Sanyal D, Shrestha A (2008) Direct effect of herbicides on plant pathogens and disease development in various cropping systems. Weed Sci 56:155–160

    Article  CAS  Google Scholar 

  • Schuette J (1998) Environmental fate of glyphosate. Environmental Monitoring and Pest Management, Sacramento, 95824-5624

  • Steinrücken HC, Amrhein N (1984) 5-Enolpyruvylshikimate-3-phosphate synthase of klebsiella-Pneumoniae, 2. inhibition by Glyphosate [N-(Phosphonomethyl) Glycine]. Eur J Biochem 143:351–357

    Article  PubMed  Google Scholar 

  • Stephenson GR (2000) Pesticide use and world food production: risks and benefits. In: Proceedings of National Meeting Expert Committee on Weeds, Victoria

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Swanton CJ, Murphy SD, Hume DJ, Clements DR (1996) Recent improvements in the energy efficiency of agriculture. Agric Syst 52:399–418

    Article  Google Scholar 

  • Taspinar MS, Agar G, Alpsoy L, Yildirim N, Bozari S et al (2011) The protective role of zinc and calcium in Vicia faba seedlings subjected to cadmium stress. Toxicol Ind Health 27:73–80

    Article  CAS  PubMed  Google Scholar 

  • Tomaso JMD (1994) Physiology of herbicide action. Q Rev Biol 69:297

    Article  Google Scholar 

  • Velini ED, Trindade MLB, Barberis LRM, Duke SO (2010) Growth regulation and other secondary effects of herbicides. Weed Sci 58:351–354

    Article  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genetic 13:335–340

    Article  CAS  Google Scholar 

  • Zaouali Y, Chograni H, Trimech R, Boussaid M (2012) Genetic diversity and population structure among Rosmarinus officinalis L. (Lamiaceae) varieties: var. typicus Batt. and var. troglodytorum Maire. based on multiple traits. Ind Crops Products 38:166–176

    Article  Google Scholar 

  • Zhang X, Wallace AD, Du P, Kibbe WA, Jafari N et al (2012) DNA methylation alterations in response to pesticide exposure in vitro. Environ Mol Mutagen 53:542–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zilberman D (2008) The evolving functions of DNA methylation. Curr Opin Plant Biol 11:554–559

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guleray Agar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nardemir, G., Agar, G., Arslan, E. et al. Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theor. Exp. Plant Physiol. 27, 131–139 (2015). https://doi.org/10.1007/s40626-015-0039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-015-0039-1

Keywords

Navigation