Skip to main content

Novel resistance mechanism of barley chlorina f104 antenna mutant against photoinhibition: possible role of new identified chloroplastic cpNrp protein

Abstract

Protein with NmrA domain serving as the receptor for oxidized NAD+/NADP was identified in chloroplasts of spring barley mutant chlorina f104. NmrA was upregulated under environmental stresses in comparison to wild type plants. Following bioinformatic analysis revealed the nuclear localization signal in this protein. Pathways for the protein transport from cytoplasm into the chloroplast are described, but the mechanism of protein transport from chloroplast to nucleus, where the gene transcription can be possibly affected, is not clear. This protein named as cpNrp (chloroplastic NmrA related protein) is probably a member of new protein family and can serve as chloroplastic redox receptor. Consequently, cpNrp transported as a signal molecule into the nucleus and influences on the gene transcription under environmental stresses (high light radiation). It can be suggested that the presence of these proteins in chloroplasts of chlorina f104 barley mutant is related to up-regulation of photoprotective mechanisms, contributing to maintenance of high resistance against photooxidative damage in conditions of excessive light intensity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  2. Anantharaman V, Aravind L (2002) The PRC-barrel: a widespread, conserved domain shared by photosynthetic reaction center subunits and proteins of RNA metabolism. Genome Biol 3:research0061.0061–research0061.0069

    Google Scholar 

  3. Andrianopoulos A, Kourambas S, Sharp JA, Davis MA, Hynes MJ (1998) Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J Bacteriol 180:1973–1977

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Attisano L, Tuen Lee-Hoeflich S (2001) The Smads. Genome Biol 2:3010.1–3010.8

    Article  Google Scholar 

  5. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bossmann B, Knoetzel J, Jansson S (1997) Screening of chlorina mutants of barley (Hordeum vulgare L.) with antibodies against light-harvesting proteins of PS I and PS II: absence of specific antenna proteins. Photosynth Res 52:127–136

    Article  CAS  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  8. Brestic M, Zivcak M, Olsovska K, Repkova J (2008) Functional study of PS II and PS I energy use and dissipation mechanisms in barley wild type and chlorina mutants under high light conditions. Photosynthesis energy from the sun. Springer, Dordrecht, pp 1407–1411

    Chapter  Google Scholar 

  9. Brestic M, Zivcak M, Kalaji HM, Carpentier R, Allakhverdiev SI (2012) Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105

    Article  CAS  PubMed  Google Scholar 

  10. Brestic M, Zivcak M, Olsovska K, Kalaji HM, Shao HB, Hakeem KR (2013) Heat signaling and stress responses in photosynthesis, In: Plant signaling: understanding the molecular cross-talk, Springer, New Delhi, pp 241–256

  11. Brestic M, Zivcak M, Olsovska K, Shao HB, Kalaji HM, Allakhverdiev SI (2014) Reduced glutamine synthetase activity plays a role in control of photosynthetic responses to high light in barley leaves. Plant Physiol Biochem 81:74–83

  12. Davis MA, Hynes MJ (1987) Complementation of areA - regulatory gene mutations of Aspergillus nidulans by the heterologous gene nit-2 of Neurospora crassa. Proc Natl Acad Sci USA 84:3753–3757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  14. Evans JR (1993) Photosynthesis acclimation and nitrogen partitioning within a lucerne canopy. Stability through time and comparison with a theoretical optimum. Aust J Plant Physiol 20:69–82

    Article  CAS  Google Scholar 

  15. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  16. Fu YH, Marzluf GA (1990) Nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc Natl Acad Sci USA 87:5331–5335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gilmore AM, Hazlett TL, Debrunner PG, Govindjee S (1996) Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences between barley wild-type and chlorina mutants: photochemical quenching and xanthophyll cycle-dependent nonphotochemical quenching of fluorescence. Photosynth Res 48:171–187

    Article  CAS  PubMed  Google Scholar 

  18. Grove G, Marzluf GA (1981) Identification of the product of the major regulatory gene of the nitrogen control circuit of Neurospora crassa as a nuclear DNA-binding protein. J Biol Chem 256:463–470

    CAS  PubMed  Google Scholar 

  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  20. Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Comput Methods Macromol Seq Anal 266:383–402

    Article  CAS  Google Scholar 

  21. Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268

    Article  CAS  Google Scholar 

  23. Kotaka M, Johnson C, Lamb HK, Hawkins AR, Ren J, Stammers DK (2008) Structural analysis of the recognition of the negative regulator NmrA and DNA by the zinc finger from the GATA-Type transcription factor AreA. J Mol Biol 381:373–382

    Article  CAS  PubMed  Google Scholar 

  24. Lamb H, Leslie K, Dodds AL, Nutley M, Cooper A, Johnson C, Thompson P, Stammers DK, Hawkins AR (2003) The negative transcriptional regulator NmrA discriminates between oxidized and reduced dinucleotides. J Biol Chem 278:32107–32114

    Article  CAS  PubMed  Google Scholar 

  25. Lamb HK, Ren J, Park A, Johnson C, Leslie K, Cocklin S, Thompson P, Mee C, Cooper A, Stammers DK, Hawkins AR (2004) Modulation of the ligand binding properties of the transcription repressor NmrA by GATA-containing DNA and site-directed mutagenesis. Protein Sci 13:3127–3138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lichtenthaler HL (1987) Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  27. Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  PubMed  Google Scholar 

  29. Nasmith CG, Walkowiak S, Wang L, Leung WWY, Gong Y et al (2011) Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PLoS Pathog 7(9):e1002266. doi:10.1371/journal.ppat.1002266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nichols CE, Cocklin S, Dodds A, Ren J, Lamb H, Hawkins AR, Stammers DK (2001) Expression, purification and crystallization of Aspergillus nidulans NmrA, a negative regulatory protein involved in nitrogen-metabolite repression. Acta Crystallogr Sect D-Biol 57:1722–1725

    Article  CAS  Google Scholar 

  31. Núñez-Corcuera B, Serafimidis I, Arias-Palomo E, Rivera-Calzada A, Suarez T (2008) A new protein carrying an NmrA-like domain is required for cell differentiation and development in Dictyostelium discoideum. Dev Biol 321:331–342

    Article  PubMed  Google Scholar 

  32. Peng CL, Gilmore AM (2002) Comparison of high-light effects with and without methyl viologen indicate barley chlorina mutants exhibit contrasting sensitivities depending on the specific nature of the chlorina mutation: comparison of wild type, chlorophyll-b-less chlo f2 and light-sensitive chlorophyll-b-deficient chlo f104 mutants. Funct Plant Biol 29:1171–1180

    Article  CAS  Google Scholar 

  33. Peng CL, Duan J, Lin G, Gilmore AM (2002) Correlation between photoinhibition sensitivity and the rates and relative extents of xanthophyll cycle de-epoxidation in Chlorina mutants of barley (Hordeum vulgare L.). Photosynthetica 40:503–508

    Article  CAS  Google Scholar 

  34. Perssona B, Kallberga Y, Brayd JE, Bruforde E, Dellaportaf SL, Faviag AD, Gonzalez Duarteh R, Jörnvall H, Kavanaghd KL, Kedishvili N, Kisiela M, Maserk E, Mindnichl R, Orchardg S, Penningl TM, Thorntong JM, Adamskim J, Oppermannd U (2009) The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem Biol Interact 78:94–98

    Article  Google Scholar 

  35. Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  CAS  PubMed  Google Scholar 

  36. Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorescence. Photosynth Res 9:261–272

    Article  CAS  PubMed  Google Scholar 

  37. Shao HB, Chu LY (2005) Plant molecular biology in China opportunities and challenges. Plant Mol Biol Report 23:345–358

    Article  CAS  Google Scholar 

  38. Shevchenko A, Wilm A, Vorm O, Mann M (1996) Mass spectrometric sequencing of protein from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  39. Shi Y, Shi Y (2004) Metabolic enzymes and coenzimes in transcription—a direct link between metabolism and transcription? Trends Genet 20:445–452

    Article  CAS  PubMed  Google Scholar 

  40. Stammers DK, Ren J, Leslie K, Nichols CE, Lamb HK, Cocklin S, Dodds A, Hawkins AR (2001) The structure of the negative transcriptional regulator NmrA reveals a structural superfamily which includes the short-chain dehydrogenase/reductases. EMBO J 20:6619–6626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Stirbet A, Govindjee S (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    Article  CAS  PubMed  Google Scholar 

  42. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms regulation and adaptation. Taylor and Francis, London, pp 443–480

    Google Scholar 

  43. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wilson RA, Arst HN (1998) Mutational analysis of AreA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the ‘streetwise’ GATA family of transcription factors. Microbiol Mol Biol Rev 62:586–596

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Wu G, Chu LY, Shao HB, Cai JW (2007) Insights into molecular mechanisms of mutual effect between plants and the environment. A review. Agron Sustain Dev 27:1–10

    Article  Google Scholar 

  46. Xiao X, Fu YH, Marzluf GA (1995) The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry 34:8861–8868

    Article  CAS  PubMed  Google Scholar 

  47. Zheng X, Dai X, Zhao Y, Chen Q, Lu F, Yao D, Yu Q, Liu X, Zhang C, Gu X, Luo M (2007) Restructuring of the dinucleotide-binding fold in an NADP(H) sensor protein. Proc Natl Acad Sci USA 104:8809–8814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117(1–3):529–546

    Article  CAS  PubMed  Google Scholar 

  49. Zivcak M, Brestic M, Kalaji HM, Govindjee (2014) Photosynthetic responses of sun-and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth Res 119:339–354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research has been supported by grant APVV-0197-10 and co-funded by European Community under project no 26220220180: Building Research Centre AgroBioTech”. The authors are indebted to would like to thank Dr. Abhay Kumar for his helpful comments on an earlier draft.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oksana Sytar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brestič, M., Živčák, M., Ďatko, M. et al. Novel resistance mechanism of barley chlorina f104 antenna mutant against photoinhibition: possible role of new identified chloroplastic cpNrp protein. Theor. Exp. Plant Physiol. 27, 75–85 (2015). https://doi.org/10.1007/s40626-015-0033-7

Download citation

Keywords

  • Chlorophyll fluorescence
  • Mass spectrometry
  • Photooxidative stress
  • Proteomics
  • Two-dimensional electrophoresis