Skip to main content

Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes?

Abstract

Our review focuses on the projections of climate change in the Brazilian semiarid region, the Caatinga, based on recent publications about global climate change and biology. We found several vulnerable points in the initial estimates, the main one being that the data were collected and analyzed without a multidisciplinary knowledge. This review discusses several studies that show the current knowledge in many semiarid regions around the world. Some of these studies argue for the increase in vegetation greenness responses even under severe and prolonged drought, based on the high resilience the Caatinga native species show under severe drought conditions over the years. Additionally, we include in this review recent data produced by our group on key ecophysiological variables under drought conditions. We also show successful examples of deforested areas recovery in the semiarid region of the Central America. It is critical that the recovery of semiarid areas is coupled with the implementation of socio-environmental policies, engaging the local population and providing subsidies for life wealth improvement. These are key aspects for a long-term recovery and conservation of the Brazilian dry tropical forest.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Albuquerque UP, Lima Araújo E, El-Deir ACA, Lima ALA, Souto A, Bezerra BM, Ferraz EMN, Freire EMX, Sampaio EVSB, Las-Casas FMG, Moura GJB, Pereira GA, Melo JG, Ramos MA, Rodal MJN, Schiel N, Lyra-Neves RM, Alves RRN, Azevedo-Júnior SM, Telino Júnior WR, Severi W (2012) Caatinga revisited: ecology and conservation of an importante seasonal dry forest. Sci World J 2012:1–18

    Article  Google Scholar 

  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowelle N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hoggj EH, Gonzalez P, Fenshaml R, Zhangm Z, Castro J, Demidova N, Limp JH, Allard G, Runningr SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  3. Asner GP, Alencar A (2010) Drought impacts on the Amazon forest: the remote sensing perspective. New Phytol 187:569–578

    PubMed  Article  Google Scholar 

  4. Barbosa DCA, Barbosa MCA, Lima LCM (2003) Fenologia de espécies lenhosas da Caatinga. In: Leal IR, Tabarelli M, Silva (eds) Ecologia e Conservação da Caatinga. Editora Universitária UFPE, Recife, pp 657–693

    Google Scholar 

  5. Barretto AGOP, Berndes G, Sparovek G, Wirsenius S (2013) Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975–2006 period. Glob Change Biol 19:1804–1815

    Article  Google Scholar 

  6. Bartlett MK, Scoffoni C, Sack L (2012) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 15:393–405

    PubMed  Article  Google Scholar 

  7. Benko-Iseppon AM, Soares-Cavalcanti NM, Berlarmino LC, Bezerra-Neto JP, Amorim LLB, Ferreira-Neto JRC, Pandolfi V, Azevedo HMA, Silva RLO, Santos MG, Alves M, Kido EA (2011) Prospecção de genes de resistência à seca e à salinidade em plantas nativas e cultivadas. Revista Brasileira de Geografia Física 6:1112–1134

    Google Scholar 

  8. Borchert R (1998) Responses of tropical trees to rainfall seasonality. Clim Changes 39:381–393

    Article  Google Scholar 

  9. Borchert R, Pockman WT (2005) Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiol 25:457–466

    PubMed  Article  Google Scholar 

  10. Brodribb TJ, Feild TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37:488–498

    Article  Google Scholar 

  11. Buitenwerf R, Bond WJ, Stevens N, Trollope WSW (2012) Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Glob Change Biol 18:675–684

    Article  Google Scholar 

  12. Büntgen U, Schweingruber FH (2010) Environmental change without climate change? New Phytol 188:646–651

    PubMed  Article  Google Scholar 

  13. Campos GEP, Moran MS, Huete A, Zhang Y, Bresloff C, Huxman TE, Eamus D, Bosch DD, Buda AR, Gunter SA, Scalley TH, Kitchen SG, McClaran MP, McNab WH, Montoya DS, Morgan JA, Peters DPC, Sadler EJ, Seyfried MS, Starks PJ (2013) Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494:349–352

    Article  Google Scholar 

  14. Chapotin SM, Holbrook NM, Morse SR, Gutiérrez MV (2003) Water relations of tropical dry forest flowers: pathways for water entry and the role of extracellular polysaccharides. Plant, Cell Environ 26:623–630

    CAS  Article  Google Scholar 

  15. Chapotin SM, Razanameharizaka JH, Holbrook NM (2006) Water relations of baobab trees (Adansonia spp. L.) during the rainy season: does stem water buffer daily water deficits? Plant, Cell Environ 29:1021–1032

    Article  Google Scholar 

  16. Chaturvedi RK, Raghubanshi AS, Singh JS (2011) Carbon density and accumulation in woody species of tropical dry forest in India. For Ecol Manag 262:1576–1588

    Article  Google Scholar 

  17. Costa Filho LO, Silva MHM, Almeida-Cortez JS, Silva SI, Oliveira AFM (2012) Foliar cuticular n-alkane of some Croton species from Brazilian semiarid vegetation. Biochem Syst Ecol 41:13–15

    Article  Google Scholar 

  18. Costa ACL, Galbraith D, Almeida S, Portela BTT, Costa M, Silva-Junior JA, Braga AP, Gonçalves PHL, Oliveira AAR, Fisher R, Phillips OL, Metcalfe DB, Levy P, Meir P (2010) Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187:579–591

    PubMed  Article  Google Scholar 

  19. Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) CO2 fertilization has increased maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40:3031–3035

    CAS  Article  Google Scholar 

  20. Espírito-Santo MM, Sevilha AC, Anaya FC, Barbosa R, Fernandes GW, Sanchez-Azofeifa GA, Scariot A, Noronha SE, Sampaio CA (2009) Sustainability of tropical dry forests: two case studies in southeastern and central Brazil. For Ecol Manag 258:922–930

    Article  Google Scholar 

  21. Falcão HM, Oliveira MT, Mergulhão AC, Silva MV, Santos MG (2013) Ecophysiological performance of three Opuntia ficus-indica cultivars exposed to carmine cochineal under field conditions. Sci Hortic 150:419–424

    Article  Google Scholar 

  22. Figueiredo KV, Oliveira MT, Oliveira AFM, Silva GC, Santos MG (2012) Epicuticular-wax removal influences gas exchange and water relations in the leaves of an exotic and native species from a Brazilian semiarid region under induced drought stress. Aust J Bot 60:685–692

    CAS  Article  Google Scholar 

  23. Flexas J, Niinemets U, Gallé A, Barbour MM, Centritto M, Dias-Espejo A, Douth C, Galmés J, Ribas-Carbo M, Rodriguez PL, Rosselló F, Soolanayakanahally R, Tomas M, Wright IJ, Farquhar GD, Medrano H (2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117:45–59

    CAS  PubMed  Article  Google Scholar 

  24. Friend AD (2010) Terrestrial plant production and climate change. J Exp Bot 61:1293–1309

    CAS  PubMed  Article  Google Scholar 

  25. Frosi G, Oliveira MT, Almeida-Cortez J, Santos MG (2012) Ecophysiological performance of Calotropis procera: an exotic and evergreen species in Caatinga, Brazilian semi-arid. Acta Physiologia Plantarum 35:335–344

    Google Scholar 

  26. Gariglio MA, Samapaio EVSBS, Cestaro LAC, Kageyama PY (2010) Uso sustentável e conservação dos recursos florestais da Caatinga. Ministério do Meio Ambiente. Publicado pelo Serviço Florestal Brasileiro, Brasília

    Google Scholar 

  27. Gibbs HK, Brown S, Niles JO, Foley J (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:1–13

    Google Scholar 

  28. Giullieti AM, Conceição A, Queiroz LP (2006) Diversidade e caracterização das fanerógamas do semiárido brasileiro. Publicado por Associação Plantas do Nordeste, Recife

    Google Scholar 

  29. Griscom HP, Ashton MS (2011) Restoration of dry tropical forests in Central America: a review of pattern and process. For Ecol Manag 261:1564–1579

    Article  Google Scholar 

  30. Harris NL, Brown S, Hagen SC, Saatchi SS, Petrova S, Salas W, Hansen MC, Potapov PV, Lotsch A (2012) Baseline map of carbon emissions from deforestation in tropical regions. Science 336:1573–1576

    CAS  PubMed  Article  Google Scholar 

  31. Huber-Sannwald E, Palacios MR, Moreno JTA et al (2012) Navigating challenges and opportunities of land degradation and sustainable livelihood development in dryland social–ecological systems: a case study from Mexico. Philos Trans R Soc Lond Ser Bot Biol Sci 367:3158–3177

    Article  Google Scholar 

  32. IPCC (2007) Climate change: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  33. Jeffree CE, Johnson RPC, Jarvis PO (1971) Epicuticular wax in the stomatal antechamber of Sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta 10:1–10

    Article  Google Scholar 

  34. Jetter R, Schäfer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Kerstiens G (1996) Signalling across the divide: a wider perspective of cuticular structure–function relationships. Trends Plant Sci 1:125–129

    Article  Google Scholar 

  36. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    CAS  PubMed  Article  Google Scholar 

  37. Lima ALA, Sampaio EVSB, Castro CC, Rodal MJN, Antonino ACD, Melo AL (2012) Do the phenology and functional stem attributes of woody species allow for the identification of functional groups in the semiarid region of Brazil? Trees 26:1605–1616

    Article  Google Scholar 

  38. Liu H, Williams AP, Allen CD, Guo D, Wu X, Anenkhonov OA, Liang E, Sandanov DV, Yin Y, Zhaohuan QI, Badmaeva NK (2013) Rapid warming accelerates tree growth decline in semiarid forests of Inner Asia. Glob Change Biol 19:2500–2510

    Article  Google Scholar 

  39. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055

    CAS  PubMed  Article  Google Scholar 

  40. Lopes CGR, Ferraz EMN, Castro CC, Lima EN, Santos JMFF, Santos DM, Araújo EL (2012) Forest succession and distance from preserved patches in the Brazilian semiarid region. For Ecol Manag 271:115–123

    Article  Google Scholar 

  41. Machado ICS, Barros LM, Sampaio EVSB (1997) Phenology of Caatinga species at Serra Talhada, PE. Biotropica 29:57–68

    Article  Google Scholar 

  42. Maestre FT, Salguero-Gómez R, Quero JL (2012) It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philos Trans R Soc Lond Ser Bot Biol Sci 367:3062–3075

    Article  Google Scholar 

  43. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant, Cell Environ 22:715–740

    CAS  Article  Google Scholar 

  44. Mansur RJCN, Barbosa DCA (2000) Physiological behavior in young plants of four trees species of Caatinga submitted the two cycles of water stress. Phyton 68:97–106

    Google Scholar 

  45. Marengo JA, Nobre C, Tomasella J, Cardoso MF, Oyama MD (2008) Hydro-climate and ecological behaviour of the drought of Amazonia in 2005. Philos Trans R Soc Lond Ser Bot Biol Sci 363:1773–1778

    CAS  Article  Google Scholar 

  46. Marengo JA, Ambrizzi T, Rocha RP et al (2009a) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35:1073–1097

    Article  Google Scholar 

  47. Marengo JA, Jones R, Alves LM, Valverde MC (2009b) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29:2241–2255

    Article  Google Scholar 

  48. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. doi:10.1029/2011GL047436

    Article  Google Scholar 

  49. Markesteijn L, Iraipi J, Bongers F, Poorter L (2010) Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. J Trop Ecol 26:497–508

    Article  Google Scholar 

  50. Markewitz D, Devine S, Davidson EA, Brando P, Nepstad DC (2010) Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytol 187:592–607

    PubMed  Article  Google Scholar 

  51. Metcalfe DB, Meir P, Aragão LEOC, Lobo-do-Vale R, Galbraith D, Fisher RA, Chaves MM, Maroco JP, Costa ACL, Almeida SS, Braga AP, Gonçalves PHL, Athaydes J, Costa M, Portela TTB, Oliveira AAR, Malhi Y, Williams M (2010) Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. New Phytol 187:608–621

    CAS  PubMed  Article  Google Scholar 

  52. Miles L, Newton AC, Fries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    Article  Google Scholar 

  53. Ministério da Ciência e Tecnologia (MCTI) (2013) Estimativas anuais de emissões de gases de efeito estufa no Brasil. MCTI, Brasília

    Google Scholar 

  54. Ministério do Meio Ambiente (MMA), Secretaria de Recursos Hídricos da Paraíba, Universidade Federal da Paraíba (2007) Altas das Áreas suscetíveis à desertificação do Brasil. Organizador Marcos Oliveira Santana, Brasília

    Google Scholar 

  55. Ministério do Meio Ambiente: TNC (MMA) (2008) Mapa das Unidades de Conservação e Terras Indígenas do Bioma Caatinga. Org. Shirley Hauff. Coronário, Brasília

    Google Scholar 

  56. Mott KA, Buckley TN (2000) Patchy stomatal conductance: emergent collective behaviour of stomata. Trends Plant Sci 5:258–262

    CAS  PubMed  Article  Google Scholar 

  57. Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  58. Newingham BA, Vanier CH, Charlet TN, Ogle K (2013) No cumulative effect of 10 years of elevated [CO2] on perennial plant biomass components in the Mojave Desert. Glob Change Biol 19:2168–2181

    Article  Google Scholar 

  59. Ni Y, Guo YJ, Han L, Han I, Tang H, Conyers M (2012) Leaf cuticular waxes and physiological parameters in alfalfa leaves as influenced by drought. Photosynthetica 50:458–466

    CAS  Article  Google Scholar 

  60. Nobre CA, Lahsen M, Ometto JPHB (2008) Global environmental change research: empowering developing countries. Anais da Academia Brasileira de Ciências 80:523–529

    PubMed  Article  Google Scholar 

  61. Oliveira AFM, Salatino A (2000) Major constituents of the foliar epicuticular waxes of species from the Caatinga and Cerrado. Z Naturforsch 55:688–692

    CAS  Google Scholar 

  62. Oliveira AFM, Meirelles ST, Salatino A (2003) Epicuticular waxes from Caatinga and Cerrado species and their efficiency against water loss. Anais da Academia Brasileira de Ciências 75:431–439

    CAS  PubMed  Article  Google Scholar 

  63. Phillips OL, Van der Heijden G, Lewis SL (2010) Drought–mortality relationships for tropical forests. New Phytol 187:631–646

    PubMed  Article  Google Scholar 

  64. Pinho RS, Oliveira AFM, Silva SI (2009) Potential oilseed crops from the semiarid region of northeastern Brazil. Bioresour Technol 100:6114–6117

    CAS  PubMed  Article  Google Scholar 

  65. Powers JS, Becknell JM, Irving J, Pèrez-Aviles D (2009) Diversity and structure of regenerating tropical dry forests in Costa Rica: geographic patterns and environmental drivers. For Ecol Manag 258:959–970

    Article  Google Scholar 

  66. Prince SD, Wessels KJ, Tucker CJ, Nicholson SE (2007) Desertification in the Sahel: a reinterpretation of a reinterpretation. Glob Change Biol 13:1308–1313

    Article  Google Scholar 

  67. Quesada M, Sanchez-Azofeifa GA, Alvarez-Añorve M (2009) Succession and management of tropical dry forests in the Americas: review and new perspectives. For Ecol Manag 258:1014–1024

    Article  Google Scholar 

  68. Rivas R, Oliveira MT, Santos MG (2013) Three cycles of water deficit from seed to young plants of Moringa oleifera woody species improves stress tolerance. Plant Physiol Biochem 63:200–208

    CAS  PubMed  Article  Google Scholar 

  69. Rodal MJN, Sampaio EVSBA (2002) Vegetacao do bioma Caatinga. In: Sampaio EVSBA, Giulietti AM, Virginio J, Gamarra-Rojas CFL (eds) Vegetação e flora da Caatinga. Publicadopor PNE/CNIP, Recife, pp 11–24

    Google Scholar 

  70. Rodrigues RR, Lima RAF, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol Conserv 142:1242–1251

    Article  Google Scholar 

  71. Rotenberg E, Yakir D (2010) Contribution of semi-arid forests to the climate system. Science 327:451–454

    CAS  PubMed  Article  Google Scholar 

  72. Sampaio EVSB, Araújo EL, Salcedo IH, Tiessen H (1998) Regrowth of Caatinga vegetation after slashing and burning at Serra Talhada, PE, Brazil. Pesquisa Agropecuária Brasileira 33:621–632

    Google Scholar 

  73. Sampaio E, Gasson P, Baracat A, Cutler D, Pareyn F, Lima KC (2010) Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil. For Ecol Manag 259:1135–1140

    Article  Google Scholar 

  74. Santos JC, Leal IR, Almeida-Cortez JS, Fernandes GW, Tabarelli M (2011) Caatinga: the scientific negligence experienced by a dry tropical forest. Trop Conserv Sci 4:276–286

    Google Scholar 

  75. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438

    CAS  PubMed  Article  Google Scholar 

  76. Shope JC, Peak D, Mott KA (2008) Stomatal responses to humidity in isolated epidermes. Plant, Cell Environ 31:1290–1298

    Article  Google Scholar 

  77. Silva RA, Santos AMM, Tabarelli M (2003) Riqueza e diversidade de plantas lenhosas em cinco unidades de paisagens da Caatinga. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e Conservação da Caatinga. EditoraUniversitária da UFPE, Recife

    Google Scholar 

  78. Silva JMC, Tabarelli M, Fonseca MT, Lins LV (2004a) Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação. MMA—UFPE—Conservation International—Biodiversitas—Embrapa Semi-arido, Brasilia

    Google Scholar 

  79. Silva EC, Nogueira RJMC, Azevedo-Neto AD, Brito JZ, Cabral EL (2004b) Ecophysiological aspects of ten species occurring in “caatinga” dry forest in Cabaceiras County, Paraiba State, Brazil. Revista Iheringia 59:201–205

    Google Scholar 

  80. Silva EC, Nogueira RJMC, Araújo FP, Melo NF, Azevedo-Neto AD (2008) Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63:147–157

    Article  Google Scholar 

  81. Souza BD, Meiado MV, Rodrigues BM, Santos MG (2009) Water relations and chlorophyll fluorescence responses of two leguminous trees from the Caatinga to different watering regimes. Acta Physiol Plant 32:235–244

    Article  Google Scholar 

  82. Stoner KE, Sánchez-Azofeifa GA (2009) Ecology and regeneration of tropical dry forests in the Americas: implications for management. For Ecol Manag 258:903–906

    Article  Google Scholar 

  83. Suresh HS, Dattaraja HS, Sukumar R (2010) Relationship between annual rainfall and tree mortality in a tropical dry forest: results of a 19-year study at Mudumalai, southern India. For Ecol Manag 259:762–769

    Article  Google Scholar 

  84. Tadeu J, Costa DM, Holanda L, Andrade C (2008) Knowledge and use of ouricuri (Syagrus coronata) and babaçu (Orbignya phalerata) in Buíque, Pernambuco State, Brazil. Acta Bot Brasilica 22:1141–1149

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by FACEPE-FAPESP to the project “Impactos de mudanças climáticas sobre a cobertura e uso da terra em Pernambuco: geração e disponibilização de informações para o subsídio a políticas públicas” (APQ-FACEPE-0077-5.01/09), by FACEPE to the project “Aumento da tolerância em plantas jovens de espécies lenhosas da Caatinga aos estresses salino e seca (APQ-0829-2.03/12)” and by CNPq to the project “Biodiversidade e regeneração natural em florestas tropicais secas brasileiras”—SISBIOTA (CNPq-563304/2010-3). We are also grateful to Fazenda Tamanduá and the Instituto Agronômico de Pernambuco (IPA) for the logistic support during the studies and to CNPq for the fellowships.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mauro G. Santos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santos, M.G., Oliveira, M.T., Figueiredo, K.V. et al. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes?. Theor. Exp. Plant Physiol 26, 83–99 (2014). https://doi.org/10.1007/s40626-014-0008-0

Download citation

Keywords

  • Caatinga
  • Drought tolerance
  • Gas exchange
  • Global warming
  • Plant ecophysiology
  • Semiarid recovery