Skip to main content

Advertisement

Log in

Pathogenic pathways of renal damage in Fabry nephropathy: interplay between immune cell infiltration, apoptosis and fibrosis

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Fabry nephropathy is a consequence of the deposition of globotriaosylceramide, caused by deficient GLA enzyme activity in all types of kidney cells. These deposits are perceived as damage signals leading to activation of inflammation resulting in renal fibrosis. There are few studies related to immunophenotype characterization of the renal infiltrate in kidneys in patients with Fabry disease and its relationship to mechanisms of fibrosis. This work aims to quantify TGF-β1 and active caspase 3 expression and to analyze the profile of cells in inflammatory infiltration in kidney biopsies from Fabry naïve-patients, and to investigate correlations with clinical parameters.

Methods

Renal biopsies from 15 treatment-naïve Fabry patients were included in this study. Immunostaining was performed to analyze active caspase 3, TGF-β1, TNF-α, CD3, CD20, CD68 and CD163. Clinical data were retrospectively gathered at time of kidney biopsy.

Results

Our results suggest the production of TNFα and TGFβ1 by tubular cells, in Fabry patients. Active caspase 3 staining revealed that tubular cells are in apoptosis, and apoptotic levels correlated with clinical signs of chronic kidney disease, proteinuria, and inversely with glomerular filtration rate. The cell infiltrates consisted of macrophages, T and B cells. CD163 macrophages were found in biopsy specimens and their number correlates with TGFβ1 and active caspase 3 tubular expression.

Conclusions

These results suggest that CD163+ cells could be relevant mediators of fibrosis in Fabry nephropathy, playing a role in the induction of TGFβ1 and apoptotic cell death by tubular cells. These cells may represent a new player in the pathogenic mechanisms of Fabry nephropathy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data is available upon request.

References

  1. Colley JR, Miller DR, Hutt MS, Wallace HJ, DE Wardener HE (1958) The renal lesion in angiokeratoma corporis diffusum. BMJ 1(5082):1266–1268. https://doi.org/10.1136/bmj.1.5082.1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Germain DP, Moiseev S, Suárez-Obando F (2021) The benefits and challenges of family genetic testing in rare genetic diseases-lessons from Fabry disease. Mol Genet Genom 9(5):e1666. https://doi.org/10.1002/mgg3.1666

    Article  Google Scholar 

  3. Tøndel C, Bostad L, Hirth A, Svarstad E (2008) Renal biopsy findings in children and adolescents with fabry disease and minimal albuminuria. Am J Kidney Dis. https://doi.org/10.1053/j.ajkd.2007.12.032

    Article  PubMed  Google Scholar 

  4. De Francesco P, Mucci JM, Ceci R, Rozenfeld PA (2013) Globotriaosylceramide (Gb3) induces a proinflammatory cytokine profile in dendritic cells and macrophages: consequences for Fabry disease. Mol Genet Metab 108(2):S33. https://doi.org/10.1016/j.ymgme.2012.11.064

    Article  Google Scholar 

  5. Feriozzi S, Rozenfeld P (2021) Pathology and pathogenic pathways in fabry nephropathy. Clin Exp Nephrol 25(9):925–934. https://doi.org/10.1007/s10157-021-02058-z

    Article  CAS  PubMed  Google Scholar 

  6. Sanchez-Niño MD, Carpio D, Sanz AB, Ruiz-Ortega M, Mezzano S, Ortiz A (2015) Lyso-Gb3 activates Notch1 in human podocytes. Hum Mol Genet 24(20):5720–5732. https://doi.org/10.1093/hmg/ddv291

    Article  CAS  PubMed  Google Scholar 

  7. Rozenfeld PA, de los Angeles Bolla M, Quieto P, Pisani A, Feriozzi S, Neuman P, Bondar C (2020) Pathogenesis of Fabry nephropathy: the pathways leading to fibrosis. Mol Genet Metabol. https://doi.org/10.1016/j.ymgme.2019.10.010

    Article  Google Scholar 

  8. Meng XM, Nikolic-Paterson DJ, Lan HY (2014) Inflammatory processes in renal fibrosis. Nat Rev Nephrol 10(9):493–503. https://doi.org/10.1038/nrneph.2014.114

    Article  CAS  PubMed  Google Scholar 

  9. Ley K (2017) M1 means kill; M2 means heal. J Immunol 199(7):2191–2193. https://doi.org/10.4049/jimmunol.1701135

    Article  CAS  PubMed  Google Scholar 

  10. Tang PMK, Nikolic-Paterson DJ, Lan HY (2019) Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 15(3):144–158. https://doi.org/10.1038/s41581-019-0110-2

    Article  PubMed  Google Scholar 

  11. Ding X, Boney-montoya J, Owen BM, Bookout AL, Coate C, Mangelsdorf DJ, Kliewer SA (2013) Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 16(3):387–393. https://doi.org/10.4049/jimmunol.1200662

    Article  CAS  Google Scholar 

  12. Li J, Liu CH, Xu DL, Gao B (2015) Significance of CD163-positive macrophages in proliferative glomerulonephritis. Am J Med Sci 350(5):387–392. https://doi.org/10.1097/MAJ.0000000000000569

    Article  PubMed  Google Scholar 

  13. Klessens CQF, Zandbergen M, Wolterbeek R, Bruijn JA, Rabelink TJ, Bajema IM, Ijpelaar DHT (2017) Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol Dial Transpl 32(8):1322–1329. https://doi.org/10.1093/ndt/gfw260

    Article  CAS  Google Scholar 

  14. Campanholle G, Ligresti G, Gharib SA, Duffield JS (2013) Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis. Am J Physiol Cell Physiol. https://doi.org/10.1152/ajpcell.00414.2012

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee SY, Kim SI, Choi ME (2015) Therapeutic targets for treating fibrotic kidney diseases. Transl Res 165(4):512–530. https://doi.org/10.1016/j.trsl.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  16. Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T et al (2014) Role of the TNF pathway in the progression of diabetic nephropathy in KK-Ay mice. Am J Physiol Renal Physiol 306(11):1335–1347. https://doi.org/10.1152/ajprenal.00509.2013

    Article  CAS  Google Scholar 

  17. Idasiak-Piechocka I, Oko A, Pawliczak E, Kaczmarek E, Czekalsk S (2010) Urinary excretion of soluble tumour necrosis factor receptor 1 as a marker of increased risk of progressive kidney function deterioration in patients with primary chronic glomerulonephritis. Nephrol Dial Transpl 25(12):3948–3956. https://doi.org/10.1093/ndt/gfq310

    Article  CAS  Google Scholar 

  18. Ziyadeh FN (2004) No title. J Am Soc Nephrol 15(15 Suppl):S55–S57

    Article  CAS  PubMed  Google Scholar 

  19. Chung S, Son M, Chae Y, Oh S, Koh ES, Kim YK, Shin SJ, Park CW, Jung SC, Kim HS (2021) Fabry disease exacerbates renal interstitial fibrosis after unilateral ureteral obstruction via impaired autophagy and enhanced apoptosis. Kidney Res Clin Pract 40(2):208–219. https://doi.org/10.23876/j.krcp.20.264

    Article  PubMed  PubMed Central  Google Scholar 

  20. Song HY, Chien CS, Yarmishyn AA, Chou SJ, Yang YP, Wang ML, Wang CY, Leu HB, Yu WC, Chang YL, Chiou SH (2019) Generation of GLA-knockout human embryonic stem cell lines to model autophagic dysfunction and exosome secretion in fabry disease-associated hypertrophic cardiomyopathy. Cells 8(4):327. https://doi.org/10.3390/cells8040327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turkmen K, Karaselek MA, Celik SC, Esen HH, Ozer H, Baloglu I et al (2023) Could immune cells be associated with nephropathy in Fabry disease patients? Int Urol Nephrol 55(6):1575–1588. https://doi.org/10.1007/s11255-023-03468-6

    Article  CAS  PubMed  Google Scholar 

  22. Lv W, Booz GW, Wang Y, Fan F, Roman RJ (2018) Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol 820(December 2017):65–76. https://doi.org/10.1016/j.ejphar.2017.12.016

    Article  CAS  PubMed  Google Scholar 

  23. Brilla CG, Reams GP, Maisch B, Weber KT (1993) Renin-angiotensin system and myocardial fibrosis in hypertension: regulation of the myocardial collagen matrix. Eur Heart J 14(Suppl J):57–61

    CAS  PubMed  Google Scholar 

  24. Barrera-Chimal J, Estrela GR, Lechner SM, Giraud S, El Moghrabi S, Kaaki S, Kolkhof P, Hauet T, Jaisser F (2018) The myeloid mineralocorticoid receptor controls inflammatory and fibrotic responses after renal injury via macrophage interleukin-4 receptor signaling. Kidney Int 93(6):1344–1355. https://doi.org/10.1016/j.kint.2017.12.016. (Epub 2018 Mar 13)

    Article  CAS  PubMed  Google Scholar 

  25. Tesch GH, Young MJ (2017) Mineralocorticoid receptor signaling as a therapeutic target for renal and cardiac fibrosis. Front Pharmacol 8:313. https://doi.org/10.3389/fphar.2017.00313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heerspink HJL, Birkenfeld AL, Cherney DZI, Colhoun HM, Ji L, Mathieu C, Groop PH, Pratley RE, Rosas SE, Rossing P, Skyler JS, Tuttle KR, Lawatscheck R, Scott C, Edfors R, Scheerer MF, Kolkhof P, McGill JB (2023) Rationale and design of a randomized phase III registration trial investigating finerenone in participants with type 1 diabetes and chronic kidney disease: the FINE-ONE trial. Diabetes Res Clin Pract 204:110908. https://doi.org/10.1016/j.diabres.2023.110908

    Article  CAS  PubMed  Google Scholar 

  27. Weidemann F, Sanchez-Niño MD, Politei J, Oliveira JP, Wanner C, Warnock DG, Ortiz A (2013) Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J Rare Dis 8(1):1–12. https://doi.org/10.1186/1750-1172-8-116

    Article  Google Scholar 

  28. Najafian B, Tøndel C, Svarstad E, Gubler MC, Oliveira JP, Mauer M (2020) Accumulation of globotriaosylceramide in podocytes in fabry nephropathy is associated with progressive podocyte loss. J Am Soc Nephrol 31(4):865–875. https://doi.org/10.1681/ASN.2019050497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhuang Y, Zhao F, Liang J, Deng X, Zhang Y, Ding G et al (2017) Activation of COX-2/mPGES-1/PGE2 cascade via NLRP3 inflammasome contributes to albumin-induced proximal tubule cell injury. Cell Physiol Biochem 42(2):797–807. https://doi.org/10.1159/000478070

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was funded by Shire Human Genetic Therapies Inc., now part of the Takeda group of companies, Investigator Research program under IIR-ARG-002876 (Japan) and by Universidad Nacional de La Plata [X814 to PR] (Argentina). None of the funders were involved in the study design, data collection, data analysis, data interpretation, writing of the report, or decision to submit for publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, writing and revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paula Adriana Rozenfeld.

Ethics declarations

Conflict of interest

PN, AP, SF and PR have received travel grants, research grants and/or consulting fees from Takeda and Amicus.

Ethical approval

The procedures were in accordance with the ethical standards of the Ethical Committee of Framingham (La Plata, Argentina) and with the Helsinki Declaration of 1975, as revised in 2013.

Statement of human and animal rights

All procedures were approved by the Ethical Committee of Framingham (La Plata, Argentina) International review Board.

Informed consent

All patients provided written informed consent to participate in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondar, C., de Bolla, M.A., Neumann, P. et al. Pathogenic pathways of renal damage in Fabry nephropathy: interplay between immune cell infiltration, apoptosis and fibrosis. J Nephrol (2024). https://doi.org/10.1007/s40620-024-01908-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40620-024-01908-9

Keywords

Navigation