Skip to main content

Advertisement

Log in

Factors associated with early-onset intracranial aneurysms in patients with autosomal dominant polycystic kidney disease

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Recently, the importance of attribute-based medicine has been emphasized. The effects of early-onset intracranial aneurysms on patients can be significant and long-lasting. Herein, we compared the factors associated with intracranial aneurysms in patients with autosomal dominant polycystic kidney disease (ADPKD) according to age categories (≥ 50 years, < 50 years).

Methods

We included 519 ADPKD patients, with a median age of 44 years, estimated glomerular filtration rate of 54.5 mL/min/1.73 m2, and total follow-up duration of 3104 patient-years. Logistic regression analyses were performed to determine factors associated with intracranial aneurysms.

Results

Regarding the presence of intracranial aneurysm, significant interactions were identified between the age category (age ≥ 50 years), female sex (P = 0.0027 for the interaction) and hypertension (P = 0.0074 for the interaction). Female sex and hypertension were associated with intracranial aneurysm risk factors only in patients aged ≥ 50 years. The presence of intracranial aneurysm was significantly associated with chronic kidney disease (CKD) stages 4–5 (odds ratio [OR] = 3.87, P = 0.0007) and family history of intracranial aneurysm or subarachnoid hemorrhage (OR = 2.30, P = 0.0217) in patients aged < 50 years. For patients aged ≥ 50 years, in addition to the abovementioned factors [OR = 2.38, P = 0.0355 for CKD stages 4–5; OR = 3.49, P = 0.0094 for family history of intracranial aneurysm or subarachnoid hemorrhage], female sex (OR = 4.51, P = 0.0005), and hypertension (OR = 5.89, P = 0.0012) were also associated with intracranial aneurysm.

Conclusion

Kidney dysfunction and family history of intracranial aneurysm or subarachnoid hemorrhage are risk factors for early-onset intracranial aneurysm. Patients aged < 50 years with a family history of intracranial aneurysm or subarachnoid hemorrhage or with CKD stages 4–5 may be at an increased risk of early-onset intracranial aneurysm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available because they contain information that could compromise the privacy of research participants.

References

  1. de Rooij NK, Linn FHH, van der Plas JA, Algra A, Rinkel GJE (2007) Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry 78:1365–1372

    Article  PubMed  PubMed Central  Google Scholar 

  2. Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet 389:655–666. https://doi.org/10.1016/S0140-6736(16)30668-7

    Article  PubMed  Google Scholar 

  3. Li MH, Chen SW, Li YD et al (2013) Prevalence of unruptured cerebral aneurysms in chinese adults aged 35 to 75 years: a cross-sectional study. Ann Intern Med 159:514–521. https://doi.org/10.7326/0003-4819-159-8-201310150-00004

    Article  PubMed  Google Scholar 

  4. Rinkel GJ, Djibuti M, Algra A, van Gijn J (1998) Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256. https://doi.org/10.1161/01.str.29.1.251

    Article  CAS  PubMed  Google Scholar 

  5. Schievink WI, Torres VE, Piepgras DG, Wiebers DO (1992) Saccular intracranial aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 3:88–95

    Article  CAS  PubMed  Google Scholar 

  6. Nurmonen HJ, Huttunen T, Huttunen J et al (2017) Polycystic kidney disease among 4,436 intracranial aneurysm patients from a defined population. Neurology 89:1852–1859. https://doi.org/10.1212/WNL.0000000000004597

    Article  PubMed  Google Scholar 

  7. Perrone RD, Malek AM, Watnick T (2015) Vascular complications in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 11:589–598. https://doi.org/10.1038/nrneph.2015.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Räisänen S, Frösen J, Kurki M et al (2018) Impact of young age on the presentation of saccular intracranial aneurysms: population-based analysis of 4082 patients. Neurosurgery 82:815–823

    Article  PubMed  Google Scholar 

  9. Kim ST, Brinjikji W, Kallmes DF (2016) Prevalence of intracranial aneurysms in patients with connective tissue diseases: a retrospective study. Am J Neuroradiol 37:1422–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodrigues VJ, Elsayed S, Loeys BL, Dietz HC, Yousem DM (2009) Neuroradiologic manifestations of Loeys-Dietz syndrome type 1. Am J Neuroradiol 30:1614–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oderich G, Sullivan T, Bower T et al (2007) Vascular abnormalities in patients with neurofibromatosis syndrome type I: clinical spectrum, management, and results. J Vasc Surg 46:475–484

    Article  PubMed  Google Scholar 

  12. Chihi M, Gembruch O, Darkwah Oppong M et al (2019) Intracranial aneurysms in patients with tuberous sclerosis complex: a systematic review. J Neurosurg Pediatr 24:174–183

    Article  PubMed  Google Scholar 

  13. Korja M, Silventoinen K, McCarron P et al (2010) Genetic epidemiology of spontaneous subarachnoid hemorrhage: Nordic twin study. Stroke 41:2458–2462. https://doi.org/10.1161/STROKEAHA.110.586420

    Article  PubMed  Google Scholar 

  14. Wills S, Ronkainen A, van der Voet M et al (2003) Familial intracranial aneurysms: an analysis of 346 multiplex finnish families. Stroke 34:1370–1374

    Article  PubMed  Google Scholar 

  15. Zhou S, Dion P, Rouleau G (2018) Genetics of intracranial aneurysms. Stroke 49:780–787

    Article  PubMed  Google Scholar 

  16. Kataoka H, Akagawa H, Ushio Y et al (2022) Mutation type and intracranial aneurysm formation in autosomal dominant polycystic kidney disease. Stroke Vasc Interv Neurol 2:e000203. https://doi.org/10.1161/SVIN.121.000203

    Article  Google Scholar 

  17. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ (2009) Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol 8:635–642. https://doi.org/10.1016/S1474-4422(09)70126-7

    Article  PubMed  Google Scholar 

  18. Kataoka H, Nitta K, Hoshino J (2023) Visceral fat and attribute-based medicine in chronic kidney disease. Front Endocrinol. https://doi.org/10.3389/fendo.2023.1097596

    Article  Google Scholar 

  19. Kataoka H, Mochizuki T, Ohara M et al (2022) Urate-lowering therapy for Ckd patients with asymptomatic hyperuricemia without proteinuria elucidated by attribute-based research in the feather study. Sci Rep 12:3784. https://doi.org/10.1038/s41598-022-07737-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kataoka H, Ono K, Mochizuki T et al (2019) A body mass index-based cross-classification approach for the assessment of prognostic factors in chronic kidney disease progression. Kidney Blood Press Res 44:362–383. https://doi.org/10.1159/000501021

    Article  CAS  PubMed  Google Scholar 

  21. Kataoka H, Ohara M, Mochizuki T et al (2020) Sex differences in time-series changes in pseudo-R(2) values regarding hyperuricemia in relation to the kidney prognosis. J Pers Med. https://doi.org/10.3390/jpm10040248

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sacristan JA (2015) Clinical research and medical care: towards effective and complete integration. BMC Med Res Methodol 15:4. https://doi.org/10.1186/1471-2288-15-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Butler WE, Barker FG II, Crowell RM (1996) Patients with polycystic kidney disease would benefit from routine magnetic resonance angiographic screening for intracerebral aneurysms: a decision analysis. Neurosurgery 38:506–515. https://doi.org/10.1097/00006123-199603000-00018

    Article  CAS  PubMed  Google Scholar 

  24. Horie S, Mochizuki T, Muto S et al (2016) Evidence-based clinical practice guidelines for polycystic kidney disease 2014. Clin Exp Nephrol 20:493–509. https://doi.org/10.1007/s10157-015-1219-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nishio S, Tsuchiya K, Nakatani S et al (2021) A digest from evidence-based clinical practice guideline for polycystic kidney disease 2020. Clin Exp Nephrol 25:1292–1302. https://doi.org/10.1007/s10157-021-02097-6

    Article  PubMed  Google Scholar 

  26. Matsuo S, Imai E, Horio M et al (2009) Revised equations for estimated Gfr from serum creatinine in Japan. Am J Kidney Dis 53:982–992. https://doi.org/10.1053/j.ajkd.2008.12.034

    Article  CAS  PubMed  Google Scholar 

  27. Kataoka H, Akagawa H, Yoshida R et al (2022) Impact of kidney function and kidney volume on intracranial aneurysms in patients with autosomal dominant polycystic kidney disease. Sci Rep 12:18056–18056

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Curtis MJ, Bond RA, Spina D et al (2015) Experimental design and analysis and their reporting: new guidance for publication in Bjp. Br J Pharmacol 172:3461–3471. https://doi.org/10.1111/bph.12856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vittinghoff E, McCulloch CE (2007) Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol 165:710–718. https://doi.org/10.1093/aje/kwk052

    Article  PubMed  Google Scholar 

  30. Mochizuki T, Tsuchiya K, Nitta K (2013) Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and potential therapies. Clin Exp Nephrol 17:317–326. https://doi.org/10.1007/s10157-012-0741-0

    Article  CAS  PubMed  Google Scholar 

  31. Somlo S, Markowitz GS (2000) The pathogenesis of autosomal dominant polycystic kidney disease: an update. Curr Opin Nephrol Hypertens 9:385–394

    Article  CAS  PubMed  Google Scholar 

  32. Sato M, Kataoka H, Ushio Y et al (2020) High serum phosphate level as a risk factor to determine renal prognosis in autosomal dominant polycystic kidney disease: a retrospective study. Medicines (Basel). https://doi.org/10.3390/medicines7030013

    Article  PubMed  Google Scholar 

  33. Kataoka H, Watanabe S, Sato M et al (2021) Predicting liver cyst severity by mutations in patients with autosomal-dominant polycystic kidney disease. Hep Intl 15:791–803

    Article  Google Scholar 

  34. Ushio Y, Kataoka H, Sato M et al (2020) Association between anemia and renal prognosis in autosomal dominant polycystic kidney disease: a retrospective study. Clin Exp Nephrol 24:500–508. https://doi.org/10.1007/s10157-020-01856-1

    Article  CAS  PubMed  Google Scholar 

  35. Kataoka H, Shimada Y, Nishio S et al (2023) Public support for patients with intractable diseases in japan: impact on clinical indicators from nationwide registries in patients with autosomal dominant polycystic kidney disease. Clin Exp Nephrol 27:809–811

    Article  CAS  PubMed  Google Scholar 

  36. Higashihara E, Nutahara K, Kojima M et al (1998) Prevalence and renal prognosis of diagnosed autosomal dominant polycystic kidney disease in Japan. Nephron 80:421–427

    Article  CAS  PubMed  Google Scholar 

  37. Naing L, Nordin R, Abdul Rahman H, Naing Y (2022) Sample size calculation for prevalence studies using scalex and scalar calculators. BMC Med Res Methodol 22:209–209

    Article  PubMed  PubMed Central  Google Scholar 

  38. Martínez Mesa J, González Chica D, Bastos J, Bonamigo R, Duquia R (2014) Sample size: how many participants do i need in my research? An Bras Dermatol 89:609–615

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hitchcock E, Gibson WT (2017) A review of the genetics of intracranial berry aneurysms and implications for genetic counseling. J Genet Couns 26:21–31. https://doi.org/10.1007/s10897-016-0029-8

    Article  PubMed  Google Scholar 

  40. Frosen J, Cebral J, Robertson AM, Aoki T (2019) Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurg Focus 47:E21. https://doi.org/10.3171/2019.5.FOCUS19234

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chalouhi N, Ali MS, Jabbour PM et al (2012) Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab 32:1659–1676. https://doi.org/10.1038/jcbfm.2012.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Samuel N, Radovanovic I (2019) Genetic basis of intracranial aneurysm formation and rupture: clinical implications in the postgenomic era. Neurosurg Focus 47:E10. https://doi.org/10.3171/2019.4.FOCUS19204

    Article  PubMed  Google Scholar 

  43. Jiang Z, Huang J, You L, Zhang J, Li B (2021) Stat3 contributes to intracranial aneurysm formation and rupture by modulating inflammatory response. Cell Mol Neurobiol 41:1715–1725

    Article  CAS  PubMed  Google Scholar 

  44. Strubl S, Torres JA, Spindt AK, Pellegrini H, Liebau MC, Weimbs T (2020) Stat signaling in polycystic kidney disease. Cell Signal 72:109639. https://doi.org/10.1016/j.cellsig.2020.109639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Griffin MD, Torres VE, Grande JP, Kumar R (1997) Vascular expression of polycystin. J Am Soc Nephrol 8:616–626

    Article  CAS  PubMed  Google Scholar 

  46. Hirota K, Akagawa H, Onda H, Yoneyama T, Kawamata T, Kasuya H (2016) Association of rare nonsynonymous variants in Pkd1 and Pkd2 with familial intracranial aneurysms in a Japanese population. J Stroke Cerebrovasc Dis 25:2900–2906. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.08.002

    Article  PubMed  Google Scholar 

  47. Huguenard A, Gupta V, Braverman A, Dacey R (2021) Genetic and heritable considerations in patients or families with both intracranial and extracranial aneurysms. J Neurosurg 134:1999–2006

    Article  CAS  PubMed  Google Scholar 

  48. Kataoka H, Yoshida R, Iwasa N et al (2022) Germline mutations for kidney volume in Adpkd. Kidney Int Rep 7:537–546. https://doi.org/10.1016/j.ekir.2021.12.012

    Article  PubMed  Google Scholar 

  49. Kataoka H, Fukuoka H, Makabe S et al (2020) Prediction of renal prognosis in patients with autosomal dominant polycystic kidney disease using Pkd1/Pkd2 mutations. J Clin Med 9:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karhunen V, Bakker M, Ruigrok Y, Gill D, Larsson S (2021) Modifiable risk factors for intracranial aneurysm and aneurysmal subarachnoid hemorrhage: a Mendelian randomization study. J Am Heart Assoc 10:e022277–e022277

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang Q, Liu H, Zhang M, Liu F, Liu T (2023) Identification of co-expressed central genes and transcription factors in atherosclerosis-related intracranial aneurysm. Front Neurol 14:1055456–1055456

    Article  PubMed  PubMed Central  Google Scholar 

  52. Backes D, Rinkel GJE, Laban K, Algra A, Vergouwen MDI (2016) Patient- and aneurysm-specific risk factors for intracranial aneurysm growth: a systematic review and meta-analysis. Stroke 47:951–957

    Article  PubMed  Google Scholar 

  53. Kataoka H, Ohara M, Shibui K et al (2012) Overweight and obesity accelerate the progression of Iga nephropathy: prognostic utility of a combination of Bmi and histopathological parameters. Clin Exp Nephrol 16:706–712. https://doi.org/10.1007/s10157-012-0613-7

    Article  CAS  PubMed  Google Scholar 

  54. Momoki K, Kataoka H, Moriyama T, Mochizuki T, Nitta K (2017) Hyperuricemia as a predictive marker for progression of nephrosclerosis: clinical assessment of prognostic factors in biopsy-proven arterial/arteriolar nephrosclerosis. J Atheroscler Thromb 24:630–642. https://doi.org/10.5551/jat.37523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawachi K, Kataoka H, Manabe S, Mochizuki T, Nitta K (2019) Low Hdl cholesterol as a predictor of chronic kidney disease progression: a cross-classification approach and matched cohort analysis. Heart Vessels 34:1440–1455. https://doi.org/10.1007/s00380-019-01375-4

    Article  PubMed  Google Scholar 

  56. Kataoka H, Ohara M, Mochizuki T et al (2020) Sex differences in time-series changes in pseudo-R2 values regarding hyperuricemia in relation to the kidney prognosis. J Pers Med 10:248

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kataoka H, Sawara Y, Kawachi K, Manabe S, Mochizuki T, Nitta K (2019) Impacts of sex differences in pulse pressure among patients with chronic kidney disease. J Pers Med. https://doi.org/10.3390/jpm9040052

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kataoka H, Mochizuki T, Iwadoh K et al (2020) Visceral to subcutaneous fat ratio as an indicator of a >/=30% Egfr decline in chronic kidney disease. PLoS ONE 15:e0241626. https://doi.org/10.1371/journal.pone.0241626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Manabe S, Kataoka H, Mochizuki T et al (2021) Impact of visceral fat area in patients with chronic kidney disease. Clin Exp Nephrol 25:608–620. https://doi.org/10.1007/s10157-021-02029-4

    Article  PubMed  Google Scholar 

  60. Manabe S, Kataoka H, Mochizuki T et al (2021) Maximum carotid intima-media thickness in association with renal outcomes. J Atheroscler Thromb 28:491–505. https://doi.org/10.5551/jat.57752

    Article  PubMed  Google Scholar 

  61. Shimonaga K, Matsushige T, Ishii D et al (2018) Clinicopathological insights from vessel wall imaging of unruptured intracranial aneurysms. Stroke 49:2516–2519

    Article  PubMed  Google Scholar 

  62. Killer Oberpfalzer M, Aichholzer M, Weis S et al (2012) Histological analysis of clipped human intracranial aneurysms and parent arteries with short-term follow-up. Cardiovasc Pathol 21:299–306

    Article  PubMed  Google Scholar 

  63. Matsushige T, Shimonaga K, Ishii D et al (2019) Vessel wall imaging of evolving unruptured intracranial aneurysms. Stroke 50:1891–1894

    Article  PubMed  Google Scholar 

  64. Frösen J, Tulamo R, Paetau A et al (2012) Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol 123:773–786

    Article  PubMed  Google Scholar 

  65. Foroud T, Sauerbeck L, Brown R et al (2008) Genome screen to detect linkage to intracranial aneurysm susceptibility genes: the familial intracranial aneurysm (Fia) study. Stroke 39:1434–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Krex D, Röhl H, König I, Ziegler A, Schackert H, Schackert G (2003) Tissue inhibitor of metalloproteinases-1, -2, and -3 polymorphisms in a white population with intracranial aneurysms. Stroke 34:2817–2821

    Article  CAS  PubMed  Google Scholar 

  67. Ruigrok YM, Rinkel GJ (2008) Genetics of intracranial aneurysms. Stroke 39:1049–1055. https://doi.org/10.1161/STROKEAHA.107.497305

    Article  PubMed  Google Scholar 

  68. Jin D, Sheng J, Yang X, Gao B (2007) Matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human cerebral ruptured and unruptured aneurysm. Surg Neurol 68(Suppl 2):S11-16 (discussion S16)

    Article  PubMed  Google Scholar 

  69. Kim SC, Singh M, Huang J et al (1997) Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery 41:642–666 (discussion 646)

    CAS  PubMed  Google Scholar 

  70. Chyatte D, Bruno G, Desai S, Todor DR (1999) Inflammation and intracranial aneurysms. Neurosurgery 45:1137–1146 (discussion 1146)

    Article  CAS  PubMed  Google Scholar 

  71. Aoki T, Yamamoto K, Fukuda M, Shimogonya Y, Fukuda S, Narumiya S (2016) Sustained expression of Mcp-1 by low wall shear stress loading concomitant with turbulent flow on endothelial cells of intracranial aneurysm. Acta Neuropathol Commun 4:48–48

    Article  PubMed  PubMed Central  Google Scholar 

  72. Muhammad S, Chaudhry S, Dobreva G, Lawton M, Niemelä M, Hänggi D (2021) Vascular macrophages as therapeutic targets to treat intracranial aneurysms. Front Immunol 12:630381–630381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oka M, Shimo S, Ohno N et al (2020) Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis. Sci Rep 10:8330–8330

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kataoka H, Ariyama Y, Deushi M, Osaka M, Nitta K, Yoshida M (2016) Inhibitory effect of serotonin antagonist on leukocyte-endothelial interactions in vivo and in vitro. PLoS ONE 11:e0147929. https://doi.org/10.1371/journal.pone.0147929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gu L, Okada Y, Clinton SK et al (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281

    Article  CAS  PubMed  Google Scholar 

  76. Reckless J, Rubin EM, Verstuyft JB, Metcalfe JC, Grainger DJ (1999) Monocyte chemoattractant protein-1 but not tumor necrosis factor-alpha is correlated with monocyte infiltration in mouse lipid lesions. Circulation 99:2310–2316

    Article  CAS  PubMed  Google Scholar 

  77. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K, Hashimoto N (2009) Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke 40:942–951

    Article  CAS  PubMed  Google Scholar 

  78. Provenzano M, Andreucci M, Garofalo C et al (2020) The association of matrix metalloproteinases with chronic kidney disease and peripheral vascular disease: a light at the end of the tunnel? Biomolecules 10:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peiskerová M, Kalousová M, Kratochvílová M et al (2009) Fibroblast growth factor 23 and matrix-metalloproteinases in patients with chronic kidney disease: are they associated with cardiovascular disease? Kidney Blood Press Res 32:276–283

    Article  PubMed  Google Scholar 

  80. Vaccaro F, Mulè G, Cottone S et al (2007) Circulating levels of adhesion molecules in chronic kidney disease correlate with the stage of renal disease and with C-reactive protein. Arch Med Res 38:534–538

    Article  CAS  PubMed  Google Scholar 

  81. Musiał K, Zwolińska D, Polak Jonkisz D, Berny U, Szprynger K, Szczepańska M (2005) Serum Vcam-1, Icam-1, and L-selectin levels in children and young adults with chronic renal failure. Pediatr Nephrol 20:52–55

    Article  PubMed  Google Scholar 

  82. Gregg LP, Tio M, Li X, Adams Huet B, de Lemos J, Hedayati SS (2018) Association of monocyte chemoattractant protein-1 with death and atherosclerotic events in chronic kidney disease. Am J Nephrol 47:395–405

    Article  CAS  PubMed  Google Scholar 

  83. Harlacher E, Wollenhaupt J, Baaten CCFMJ, Noels H (2022) Impact of uremic toxins on endothelial dysfunction in chronic kidney disease: a systematic review. Int J Mol Sci 23:531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kon V, Linton M, Fazio S (2011) Atherosclerosis in chronic kidney disease: the role of macrophages. Nat Rev Nephrol 7:45–54

    Article  CAS  PubMed  Google Scholar 

  85. Valdivielso J, Rodríguez Puyol D, Pascual J et al (2019) Atherosclerosis in chronic kidney disease: more, less, or just different? Arterioscler Thromb Vasc Biol 39:1938–1966

    Article  CAS  PubMed  Google Scholar 

  86. Lee W, Kim M, Lim Y (2020) Clinical analysis of young adult patients with ruptured intracranial aneurysms: a single-center study of 113 consecutive patients. J Cerebrovasc Endovasc Neurosurg 22:127–133

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lindgren A, Kurki M, Riihinen A et al (2014) Hypertension predisposes to the formation of saccular intracranial aneurysms in 467 unruptured and 1053 ruptured patients in Eastern Finland. Ann Med 46:169–176

    Article  CAS  PubMed  Google Scholar 

  88. Lindgren A, Räisänen S, Björkman J et al (2016) De novo aneurysm formation in carriers of saccular intracranial aneurysm disease in Eastern Finland. Stroke 47:1213–1218

    Article  PubMed  Google Scholar 

  89. Xu HW, Yu SQ, Mei CL, Li MH (2011) Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke 42:204–206. https://doi.org/10.1161/STROKEAHA.110.578740

    Article  CAS  PubMed  Google Scholar 

  90. Chauveau D, Pirson Y, Verellen-Dumoulin C, Macnicol A, Gonzalo A, Grunfeld JP (1994) Intracranial aneurysms in autosomal dominant polycystic kidney disease. Kidney Int 45:1140–1146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in-Aid for Intractable Renal Diseases Research, Research on Rare and Intractable Diseases, and Health and Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare of Japan. We further acknowledge the support of Dr. Kota Ono from Ono Biostat Consulting (Tokyo, Japan), who provided expert assistance in the statistical analysis.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kataoka.

Ethics declarations

Conflict of interest

Toshio Mochizuki received honoraria for lectures from Otsuka Pharmaceutical Co. Toshio Mochizuki and Hiroshi Kataoka belonged to an endowed department sponsored by Otsuka Pharmaceutical Co., Chugai Pharmaceutical Co., Kyowa Hakko Kirin Co., and JMS Co. The remaining authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The study was approved by the Research Ethics Committee of Tokyo Women’s Medical University (approval number, 5118) and conducted in accordance with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Statement of human and animal rights

All procedures were approved by the research ethics committee of Tokyo Women’s Medical University.

Informed consent

Passive informed consent (in the form of opt-out) was obtained from the patients, and all data were analyzed anonymously.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushio, Y., Kataoka, H., Akagawa, H. et al. Factors associated with early-onset intracranial aneurysms in patients with autosomal dominant polycystic kidney disease. J Nephrol (2024). https://doi.org/10.1007/s40620-023-01866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40620-023-01866-8

Keywords

Navigation