Skip to main content

Advertisement

Log in

Mitochondrial quality control in acute kidney disease

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Acute kidney disease (AKD) involves multiple pathogenic mechanisms,  including maladaptive repair of renal cells that are rich in mitochondria. Maintenance of mitochondrial homeostasis and quality control is crucial for normal kidney function. Mitochondrial quality control serves to maintain mitochondrial function under various conditions, including mitochondrial bioenergetics, mitochondrial biogenesis, mitochondrial dynamics (fusion and fission) and mitophagy. To date, increasing evidence indicates that mitochondrial quality control is disrupted when acute kidney disease develops. This review describes the mechanisms of mitochondria quality control in acute kidney disease, aiming to provide clues to help design new clinical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kellum JA et al (2012) Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. Kdigo clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138. https://doi.org/10.1038/kisup.2012.1

    Article  Google Scholar 

  2. Levin A et al (2013) Kidney Disease: Improving Global Outcomes (KDIGO). Kdigo 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3(1):1–150. https://doi.org/10.1038/kisup.2012.73

    Article  Google Scholar 

  3. Levey AS (2021) Defining AKD: the spectrum of AKI, AKD, and CKD. Nephron. https://doi.org/10.1159/000516647

    Article  PubMed  Google Scholar 

  4. Funk JA, Schnellmann RG (2012) Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am J Physiol Ren Physiol 302(7):F853–F864. https://doi.org/10.1152/ajprenal.00035.2011

    Article  Google Scholar 

  5. Aparicio-Trejo OE et al (2020) Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid. Free Rad Biol Med 154:18–32. https://doi.org/10.1016/j.freeradbiomed.2020.04.016

    Article  CAS  PubMed  Google Scholar 

  6. Duann P, Lin PH (2017) Mitochondria damage and kidney disease. Adv Exp Med Biol 982:529–551. https://doi.org/10.1007/978-3-319-55330-6_27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. Nat Rev Nephrol 13(10):629–646. https://doi.org/10.1038/nrneph.2017.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chawla LS et al (2017) Acute kidney disease and renal recovery: consensus report of the acute disease quality initiative (ADQI) 16 Workgroup. Nat Rev Nephrol. 13(4):241–257. https://doi.org/10.1038/nrneph.2017.2

    Article  PubMed  Google Scholar 

  9. Levey AS et al (2020) Nomenclature for kidney function and disease: report of a kidney disease: improving global outcomes (KDIGO) consensus conference. Kidney Int. 97(6):1117–1129. https://doi.org/10.1016/j.kint.2020.02.010

    Article  PubMed  Google Scholar 

  10. Ronco C, Bellomo R, Kellum JA (2019) Acute kidney injury. Lancet (Lond Engl). 394(10212):1949–1964. https://doi.org/10.1016/S0140-6736(19)32563-2

    Article  CAS  Google Scholar 

  11. Kellum JA et al (2017) Recovery after acute kidney injury. Am J Respir Crit Care Med 195(6):784–791. https://doi.org/10.1164/rccm.201604-0799OC

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shah S et al (2020) Mortality and recovery associated with kidney failure due to acute kidney injury. Clin J Am Soc Nephrol CJASN. https://doi.org/10.2215/CJN.11200919

    Article  PubMed  Google Scholar 

  13. Yan P et al (2021) Acute kidney disease in hospitalized acute kidney injury patients. PeerJ 9:e11400. https://doi.org/10.7717/peerj.11400

    Article  PubMed  PubMed Central  Google Scholar 

  14. Venkatachalam MA et al (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26(8):1765–1776. https://doi.org/10.1681/ASN.2015010006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Basile DP et al (2016) Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J Am Soc Nephrol JASN 27(3):687–697. https://doi.org/10.1681/ASN.2015030309

    Article  CAS  PubMed  Google Scholar 

  16. Bomsztyk K, Denisenko O (2013) Epigenetic alterations in acute kidney injury. Semin Nephrol 33(4):327–340. https://doi.org/10.1016/j.semnephrol.2013.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Docherty M-H et al (2019) Cellular senescence in the kidney. J Am Soc Nephrol JASN 30(5):726–736. https://doi.org/10.1681/ASN.2018121251

    Article  CAS  PubMed  Google Scholar 

  18. Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11(5):264–276. https://doi.org/10.1038/nrneph.2015.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang C et al (2021) Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol 17(5):299–318. https://doi.org/10.1038/s41581-020-00369-0

    Article  CAS  PubMed  Google Scholar 

  20. Singh AP et al (2020) Molecular connectivity of mitochondrial gene expression and OXPHOS biogenesis. Molecular Cell. https://doi.org/10.1016/j.molcel.2020.07.024

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ratliff BB et al (2016) Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal 25(3):119–146. https://doi.org/10.1089/ars.2016.6665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coppolino G et al (2018) Oxidative stress and kidney function: a brief update. Curr Pharmaceut Design 24(40):4794–4799. https://doi.org/10.2174/1381612825666190112165206

    Article  CAS  Google Scholar 

  23. Mapuskar KA et al (2019) Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biol. https://doi.org/10.1016/j.redox.2018.09.020

    Article  PubMed  Google Scholar 

  24. Kim J et al (2009) Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Ren Physiol 297(2):F461–F470. https://doi.org/10.1152/ajprenal.90735.2008

    Article  CAS  Google Scholar 

  25. Szeto HH (2014) First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 171(8):2029–2050. https://doi.org/10.1111/bph.12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Agborbesong E, Li X (2021) The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int J Mol Sci. https://doi.org/10.3390/ijms222011253

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ding W et al (2016) Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury. Oncotarget 7(14):17479–17491. https://doi.org/10.18632/oncotarget.8243

    Article  PubMed  PubMed Central  Google Scholar 

  28. Popov L-D (2020) Mitochondrial biogenesis: an update. J Cell Mol Med 24(9):4892–4899. https://doi.org/10.1111/jcmm.15194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jamwal S, Blackburn JK, Elsworth JD (2021) PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Thera 219:107705. https://doi.org/10.1016/j.pharmthera.2020.107705

    Article  CAS  Google Scholar 

  30. Chambers JM, Wingert RA (2020) PGC-1α in disease: recent renal insights into a versatile metabolic regulator. Cells. https://doi.org/10.3390/cells9102234

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tran M et al (2011) PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest 121(10):4003–4014. https://doi.org/10.1172/JCI58662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Portilla D et al (2002) Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int 62(4):1208–1218

    Article  CAS  PubMed  Google Scholar 

  33. Cherry AD et al (2014) Peroxisome proliferator-activated receptor γ co-activator 1-α as a critical co-activator of the murine hepatic oxidative stress response and mitochondrial biogenesis in Staphylococcus aureus sepsis. J Biol Chem 289(1):41–52. https://doi.org/10.1074/jbc.M113.512483

    Article  CAS  PubMed  Google Scholar 

  34. Fontecha-Barriuso M et al (2020) The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules. https://doi.org/10.3390/biom10020347

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368

    Article  CAS  PubMed  Google Scholar 

  36. Yuan Y et al (2012) Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int. 82(7):771–789. https://doi.org/10.1038/ki.2012.188

    Article  CAS  PubMed  Google Scholar 

  37. Platt C, Coward RJ (2017) Peroxisome proliferator activating receptor-γ and the podocyte. Nephrol Dial Transp 32(3):423–433. https://doi.org/10.1093/ndt/gfw320

    Article  CAS  Google Scholar 

  38. Collier JB, Schnellmann RG (2020) Extracellular signal-regulated kinase 1/2 regulates NAD metabolism during acute kidney injury through microRNA-34a-mediated NAMPT expression. Cell Mol Life Sci CMLS. 77(18):3643–3655. https://doi.org/10.1007/s00018-019-03391-z

    Article  CAS  PubMed  Google Scholar 

  39. Gibbs WS et al (2018) 5-HT receptor regulates mitochondrial homeostasis and its loss potentiates acute kidney injury and impairs renal recovery. Am J Physiol Ren Physiol 315(4):F1119–F1128. https://doi.org/10.1152/ajprenal.00077.2018

    Article  CAS  Google Scholar 

  40. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93(4):884S – 8890. https://doi.org/10.3945/ajcn.110.001917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stallons LJ, Whitaker RM, Schnellmann RG (2014) Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicol Lett 224(3):326–332. https://doi.org/10.1016/j.toxlet.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  42. Jiang M et al (2019) Combined blockade of Smad3 and JNK pathways ameliorates progressive fibrosis in folic acid nephropathy. Front Pharmacol. 10:880. https://doi.org/10.3389/fphar.2019.00880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chan DC (2020) Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol 15:235–259. https://doi.org/10.1146/annurev-pathmechdis-012419-032711

    Article  CAS  PubMed  Google Scholar 

  44. Zhan M et al (2013) Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int 83(4):568–581. https://doi.org/10.1038/ki.2012.441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tilokani L et al (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62(3):341–360. https://doi.org/10.1042/EBC20170104

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tang C et al (2018) PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy. 14(5):880–897. https://doi.org/10.1080/15548627.2017.1405880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lei R et al (2018) Mitophagy plays a protective role in iodinated contrast-induced acute renal tubular epithelial cells injury. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 46(3):975–985. https://doi.org/10.1159/000488827

    Article  CAS  Google Scholar 

  48. Wang Y et al (2020) Mitophagy in acute kidney injury and kidney repair. Cells. https://doi.org/10.3390/cells9020338

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yan Y et al (2020) miR-214 represses mitofusin-2 to promote renal tubular apoptosis in ischemic acute kidney injury. Am J Physiol Ren Physiol 318(4):F878–F887. https://doi.org/10.1152/ajprenal.00567.2019

    Article  CAS  Google Scholar 

  50. Wang Y et al (2020) Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis. Cell Death Dis 11(1):29. https://doi.org/10.1038/s41419-019-2218-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gall JM et al (2015) Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia. J Am Soc Nephrol JASN. 26(5):1092–1102. https://doi.org/10.1681/ASN.2014010126

    Article  CAS  PubMed  Google Scholar 

  52. Livingston MJ et al (2019) Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy 15(12):2142–2162. https://doi.org/10.1080/15548627.2019.1615822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin Q et al (2019) PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 26:101254. https://doi.org/10.1016/j.redox.2019.101254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Inoue T, Maekawa H, Inagi R (2019) Organelle crosstalk in the kidney. Kidney Int 95(6):1318–1325. https://doi.org/10.1016/j.kint.2018.11.035

    Article  CAS  PubMed  Google Scholar 

  55. Senft D, Ronai ZEA (2015) UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 40(3):141–148. https://doi.org/10.1016/j.tibs.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lombardi AA, Elrod JW (2017) Mediating ER-mitochondrial cross-talk. Science (New York NY). 358(6363):591–592. https://doi.org/10.1126/science.aaq0141

    Article  CAS  Google Scholar 

  57. Maekawa H, Inagi R (2019) Pathophysiological role of organelle stress/crosstalk in AKI-to-CKD. Trans Semin Nephrol 39(6):581–588. https://doi.org/10.1016/j.semnephrol.2019.10.007

    Article  CAS  Google Scholar 

  58. Kezic A et al (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. Oxid Med Cell Long 2016:2950503. https://doi.org/10.1155/2016/2950503

    Article  CAS  Google Scholar 

  59. Dare AJ et al (2015) Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant. MitoQ Redox Biol 5:163–168. https://doi.org/10.1016/j.redox.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  60. Song J et al (2022) Mitochondrial targeted antioxidant SKQ1 ameliorates acute kidney injury by inhibiting ferroptosis. Oxid Med Cell Longev 2022:1–19. https://doi.org/10.1155/2022/2223957

    Article  CAS  Google Scholar 

  61. Plotnikov EY et al (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochimica et Biophysica Acta 1812(1):77–86. https://doi.org/10.1016/j.bbadis.2010.09.008

    Article  CAS  PubMed  Google Scholar 

  62. Mukhopadhyay P et al (2012) Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radical Biol Med 52(2):497–506. https://doi.org/10.1016/j.freeradbiomed.2011.11.001

    Article  CAS  Google Scholar 

  63. Birk AV et al (2013) The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol JASN. 24(8):1250–1261. https://doi.org/10.1681/ASN.2012121216

    Article  CAS  PubMed  Google Scholar 

  64. Szeto HH et al (2017) Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1 and IL-18 and arrests CKD. J Am Soc Nephrol JASN. 28(5):1437–1449. https://doi.org/10.1681/ASN.2016070761

    Article  CAS  PubMed  Google Scholar 

  65. Liu S et al (2014) Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am J Physiol Ren Physiol 306(9):F970–F980. https://doi.org/10.1152/ajprenal.00697.2013

    Article  CAS  Google Scholar 

  66. Szeto HH et al (2015) Improving mitochondrial bioenergetics under ischemic conditions increases warm ischemia tolerance in the kidney. Am J Physiol Ren Physiol 308(1):F11–F21. https://doi.org/10.1152/ajprenal.00366.2014

    Article  CAS  Google Scholar 

  67. Tran MT et al (2016) PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature. 531(7595):528–532. https://doi.org/10.1038/nature17184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lempiäinen J et al (2012) AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney. Br J Pharmacol 166(6):1905–1915. https://doi.org/10.1111/j.1476-5381.2012.01895.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shin YJ et al (2015) Protective effects of quercetin against HgCl2-induced nephrotoxicity in sprague-dawley rats. J Med Food. 18(5):524–534. https://doi.org/10.1089/jmf.2014.3242

    Article  CAS  PubMed  Google Scholar 

  70. Kitada M, Koya D (2013) Renal protective effects of resveratrol. Oxidat Med Cell Long. 2013:568093. https://doi.org/10.1155/2013/568093

    Article  CAS  Google Scholar 

  71. Funk JA, Schnellmann RG (2013) Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia-reperfusion injury. Toxicol Appl Pharmacol. 273(2):345–354. https://doi.org/10.1016/j.taap.2013.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jesinkey SR et al (2014) Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J Am Soc Nephrol JASN 25(6):1157–1162. https://doi.org/10.1681/ASN.2013090952

    Article  CAS  PubMed  Google Scholar 

  73. Cameron RB et al (2019) Proximal tubule -adrenergic receptor mediates formoterol-induced recovery of mitochondrial and renal function after ischemia-reperfusion injury. J Pharmacol Exp Thera 369(1):173–180. https://doi.org/10.1124/jpet.118.252833

    Article  CAS  Google Scholar 

  74. Garrett SM et al (2014) Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J Pharmacol Exp Thera 350(2):257–264. https://doi.org/10.1124/jpet.114.214700

    Article  CAS  Google Scholar 

  75. Chen W et al (2018) Pioglitazone protects against renal ischemia-reperfusion injury via the AMP-activated protein kinase-regulated autophagy pathway. Front Pharmacol 9:851. https://doi.org/10.3389/fphar.2018.00851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Suzuki T et al (2016) Mitochonic Acid 5 binds mitochondria and ameliorates renal tubular and cardiac myocyte damage. J Am Soc Nephrol JASN. 27(7):1925–1932. https://doi.org/10.1681/ASN.2015060623

    Article  CAS  PubMed  Google Scholar 

  77. Poyan Mehr A et al (2018) De novo NAD biosynthetic impairment in acute kidney injury in humans. Nat Med 24(9):1351–1359. https://doi.org/10.1038/s41591-018-0138-z

    Article  CAS  PubMed  Google Scholar 

  78. Katsyuba E et al (2018) De novo NAD synthesis enhances mitochondrial function and improves health. Nature 563(7731):354–359. https://doi.org/10.1038/s41586-018-0645-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bouchez S et al (2018) Levosimendan in acute and advanced heart failure: an expert perspective on posology and therapeutic application. Cardiovasc Drugs Therapy 32(6):617–624. https://doi.org/10.1007/s10557-018-6838-2

    Article  CAS  Google Scholar 

  80. Cassidy-Stone A et al (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14(2):193–204. https://doi.org/10.1016/j.devcel.2007.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brooks C et al (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Investig 119(5):1275–1285. https://doi.org/10.1172/JCI37829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rosdah AA et al (2016) Mitochondrial fission—a drug target for cytoprotection or cytodestruction? Pharmacol Res Perspect. 4(3):e00235. https://doi.org/10.1002/prp2.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tang W-X et al (2013) Amelioration of rhabdomyolysis-induced renal mitochondrial injury and apoptosis through suppression of Drp-1 translocation. J Nephrol. 26(6):1073–1082. https://doi.org/10.5301/jn.5000268

    Article  CAS  PubMed  Google Scholar 

  84. Perry HM et al (2018) Dynamin-related protein 1 deficiency promotes recovery from AKI. J Am Soc Nephrol JASN. 29(1):194–206. https://doi.org/10.1681/ASN.2017060659

    Article  CAS  PubMed  Google Scholar 

  85. Bordt EA et al (2017) The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex i inhibitor that modulates reactive oxygen species. Dev Cell. https://doi.org/10.1016/j.devcel.2017.02.020

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cui J et al (2015) Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep 5:11256. https://doi.org/10.1038/srep11256

    Article  PubMed  PubMed Central  Google Scholar 

  87. Livingston MJ et al (2016) Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 12(6):976–998. https://doi.org/10.1080/15548627.2016.1166317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zou D et al (2019) Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI American journal of physiology. Ren Physiol 317(5):F1255–F1264. https://doi.org/10.1152/ajprenal.00346.2019

    Article  CAS  Google Scholar 

  89. Wang Z et al (2013) Redox-sensitive glycogen synthase kinase 3β-directed control of mitochondrial permeability transition: rheostatic regulation of acute kidney injury. Free Radical Biol Med 65:849–858. https://doi.org/10.1016/j.freeradbiomed.2013.08.169

    Article  CAS  Google Scholar 

  90. Wang Z et al (2015) Pharmacological targeting of GSK3β confers protection against podocytopathy and proteinuria by desensitizing mitochondrial permeability transition. Br J Pharmacol. 172(3):895–909. https://doi.org/10.1111/bph.12952

    Article  CAS  PubMed  Google Scholar 

  91. Zhao K et al (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33):34682–34690

    Article  CAS  PubMed  Google Scholar 

  92. Zhang W et al (2018) Rotenone ameliorates chronic renal injury caused by acute ischemia/reperfusion. Oncotarget 9(36):24199–24208. https://doi.org/10.18632/oncotarget.24733

    Article  PubMed  PubMed Central  Google Scholar 

  93. Aparicio-Trejo OE et al (2017) Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: relation to oxidative stress and mitochondrial bioenergetics. BioFactors (Oxf, Engl) 43(2):293–310. https://doi.org/10.1002/biof.1338

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant. no. 82100719); the Natural Science Foundation of Jiangsu Province (Grant. no. BK20210982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayu Song.

Ethics declarations

Conflict of interest

None declared.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, J., Li, X., Lei, J. et al. Mitochondrial quality control in acute kidney disease. J Nephrol 36, 1283–1291 (2023). https://doi.org/10.1007/s40620-023-01582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-023-01582-3

Keywords

Navigation