Skip to main content

Advertisement

Log in

On the importance of the interplay of residual renal function with clinical outcomes in end-stage kidney disease

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is one of the most important public health concerns of the century, and is associated with high rates of morbidity, mortality and social costs. CKD evolving towards end-stage kidney disease (ESKD) is on the rise resulting in a greater number of patients requiring peritoneal dialysis (PD) and hemodialysis (HD). The aim of this manuscript is to review the current literature on the interplay of residual renal function (RRF) with clinical outcomes in ESKD. The persistence of RRF is one of the most important predictors of decreased morbidity, mortality, and better quality of life in both PD and HD patients. RRF contributes to the well-being of ESKD patients through various mechanisms including higher clearance of solutes, maintenance of fluid balance, removal of uremic toxins and control of electrolytes. Furthermore, RRF has beneficial effects on inflammation, anemia, malnutrition, diabetes mellitus, obesity, changes in the microbiota, and cardiac diseases. Several strategies have been proposed to preserve RRF, such as blockade of the renin–angiotensin–aldosterone system, better blood pressure control, incremental PD and HD. Several clinical trials investigating the issue of preservation of RRF are ongoing. They are needed to broaden our understanding of the interplay of RRF with clinical outcomes in ESKD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prevention CfDCa. Chronic Kidney Disease in the United States, 2021 Atlanta, GA: US Department of Health and Human Services; 2021

  2. Collaboration GCKD. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. 2020.

  3. Perl J, Bargman JM (2009) The importance of residual kidney function for patients on dialysis: a critical review. Am J Kidney Dis 53(6):1068–1081

    PubMed  Google Scholar 

  4. Li T, Wilcox CS, Lipkowitz MS, Gordon-Cappitelli J, Dragoi S (2019) Rationale and strategies for preserving residual kidney function in dialysis patients. Am J Nephrol 50(6):411–421

    CAS  PubMed  Google Scholar 

  5. Wang AY, Lai KN (2006) The importance of residual renal function in dialysis patients. Kidney Int 69(10):1726–1732

    PubMed  Google Scholar 

  6. de Sequera P, Corchete E, Bohorquez L, Albalate M, Perez-Garcia R, Alique M et al (2017) Residual renal function in hemodialysis and inflammation. Ther Apher Dial 21(6):592–598

    PubMed  Google Scholar 

  7. Raikou VD, Kardalinos V, Kyriaki D (2018) The Relationship of residual renal function with cardiovascular morbidity in hemodialysis patients and the potential role of monocyte chemoattractant protein-1. Kidney Dis (Basel) 4(1):20–28

    PubMed  Google Scholar 

  8. Wang AY, Wang M, Woo J, Law MC, Chow KM, Li PK et al (2002) A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int 62(2):639–647

    PubMed  Google Scholar 

  9. Lin YC, Peng CC, Chen KC, Chen HH, Fang TC, Sung SY, et al. Effects of cholesterol levels on mortality in patients with long-term peritoneal dialysis based on residual renal function. Nutrients. 2018;10(3).

  10. Zhou W, Hu W, Han G, Wang H, Zhang J, Mei C (2018) The impact of residual renal function on quality of life in patients with peritoneal dialysis. Clin Nephrol 90(2):106–111

    PubMed  Google Scholar 

  11. Obi Y, Streja E, Mehrotra R, Rivara MB, Rhee CM, Soohoo M et al (2018) Impact of obesity on modality longevity, residual kidney function, peritonitis, and survival among incident peritoneal dialysis patients. Am J Kidney Dis 71(6):802–813

    PubMed  Google Scholar 

  12. Cupisti A, Bolasco P, D'Alessandro C, Giannese D, Sabatino A, Fiaccadori E. Protection of residual renal function and nutritional treatment: first step strategy for reduction of uremic toxins in end-stage kidney disease patients. Toxins (Basel). 2021;13(4).

  13. Patel N, Hu SL (2015) Preserving residual renal function in dialysis: what we know. Semin Dial 28(3):250–258

    PubMed  Google Scholar 

  14. Kanbay M, Ertuglu LA, Afsar B, Ozdogan E, Siriopol D, Covic A et al (2020) An update review of intradialytic hypotension: concept, risk factors, clinical implications and management. Clin Kidney J 13(6):981–993

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheetham MS, Cho Y, Krishnasamy R, Jain AK, Boudville N, Johnson DW et al (2022) Incremental versus standard (full-dose) peritoneal dialysis. Kidney Int Rep 7(2):165–176

    PubMed  Google Scholar 

  16. Obi Y, Streja E, Rhee CM, Ravel V, Amin AN, Cupisti A et al (2016) Incremental hemodialysis, residual kidney function, and mortality risk in incident dialysis patients: a cohort study. Am J Kidney Dis 68(2):256–265

    PubMed  PubMed Central  Google Scholar 

  17. Lowenstein J, Grantham JJ (2017) Residual renal function: a paradigm shift. Kidney Int 91(3):561–565

    PubMed  Google Scholar 

  18. Shafi T, Michels WM, Levey AS, Inker LA, Dekker FW, Krediet RT et al (2016) Estimating residual kidney function in dialysis patients without urine collection. Kidney Int 89(5):1099–1110

    PubMed  PubMed Central  Google Scholar 

  19. Konings CJ, Kooman JP, Schonck M, Struijk DG, Gladziwa U, Hoorntje SJ et al (2003) Fluid status in CAPD patients is related to peritoneal transport and residual renal function: evidence from a longitudinal study. Nephrol Dial Transplant 18(4):797–803

    PubMed  Google Scholar 

  20. Jansen MA, Hart AA, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT et al (2002) Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int 62(3):1046–1053

    PubMed  Google Scholar 

  21. Liu S, Diao Z, Zhang D, Ding J, Cui W, Liu W (2014) Preservation of residual renal function by not removing water in new hemodialysis patients: a randomized, controlled study. Int Urol Nephrol 46(1):83–90

    PubMed  Google Scholar 

  22. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1996;7(2):198–207.

  23. Bargman JM, Thorpe KE, Churchill DN (2001) Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol 12(10):2158–2162

    PubMed  Google Scholar 

  24. Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J et al (2002) Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 13(5):1307–1320

    CAS  PubMed  Google Scholar 

  25. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y (2005) Time profiles of peritoneal and renal clearances of different uremic solutes in incident peritoneal dialysis patients. Am J Kidney Dis 46(3):512–519

    PubMed  Google Scholar 

  26. Blacher J, Guerin AP, Pannier B, Marchais SJ, London GM (2001) Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 38(4):938–942

    CAS  PubMed  Google Scholar 

  27. Wang AY, Wang M, Woo J, Lam CW, Li PK, Lui SF et al (2003) Cardiac valve calcification as an important predictor for all-cause mortality and cardiovascular mortality in long-term peritoneal dialysis patients: a prospective study. J Am Soc Nephrol 14(1):159–168

    PubMed  Google Scholar 

  28. Block GA, Hulbert-Shearon TE, Levin NW, Port FK (1998) Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 31(4):607–617

    CAS  PubMed  Google Scholar 

  29. Evenepoel P, Meijers BK, Bammens B, Viaene L, Claes K, Sprangers B et al (2016) Phosphorus metabolism in peritoneal dialysis- and haemodialysis-treated patients. Nephrol Dial Transplant 31(9):1508–1514

    CAS  PubMed  Google Scholar 

  30. Kong J, Davies M, Mount P (2018) The importance of residual kidney function in haemodialysis patients. Nephrol (Carlton) 23(12):1073–1080

    Google Scholar 

  31. Hur SM, Ju HY, Park MY, Choi SJ, Kim JK, Hwang SD (2014) Ferritin as a predictor of decline in residual renal function in peritoneal dialysis patients. Korean J Intern Med 29(4):489–497

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454

    CAS  PubMed  Google Scholar 

  33. Chung SH, Heimbürger O, Stenvinkel P, Bergström J, Lindholm B (2001) Association between inflammation and changes in residual renal function and peritoneal transport rate during the first year of dialysis. Nephrol Dial Transplant 16(11):2240–2245

    CAS  PubMed  Google Scholar 

  34. Palomo-Piñón S, Mora-Villalpando CJ, Del Carmen P-U, Ceballos-Reyes GM, De Jesús V-G, Ávila-Díaz M et al (2014) Inflammation and myocardial damage markers influence loss of residual renal function in peritoneal dialysis patients. Arch Med Res 45(6):484–488

    PubMed  Google Scholar 

  35. Shafi T, Jaar BG, Plantinga LC, Fink NE, Sadler JH, Parekh RS et al (2010) Association of residual urine output with mortality, quality of life, and inflammation in incident hemodialysis patients: the Choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE) Study. Am J Kidney Dis 56(2):348–358

    PubMed  PubMed Central  Google Scholar 

  36. McClellan W, Aronoff SL, Bolton WK, Hood S, Lorber DL, Tang KL et al (2004) The prevalence of anemia in patients with chronic kidney disease. Curr Med Res Opin 20(9):1501–1510

    PubMed  Google Scholar 

  37. Zhang Y, Thamer M, Stefanik K, Kaufman J, Cotter DJ (2004) Epoetin requirements predict mortality in hemodialysis patients. Am J Kidney Dis 44(5):866–876

    CAS  PubMed  Google Scholar 

  38. Louw EH, Chothia MY (2017) Residual renal function in chronic dialysis is not associated with reduced erythropoietin-stimulating agent dose requirements: a cross-sectional study. BMC Nephrol 18(1):336

    PubMed  PubMed Central  Google Scholar 

  39. Vilar E, Wellsted D, Chandna SM, Greenwood RN, Farrington K (2009) Residual renal function improves outcome in incremental haemodialysis despite reduced dialysis dose. Nephrol Dial Transplant 24(8):2502–2510

    PubMed  Google Scholar 

  40. Wang AY, Sea MM, Ip R, Law MC, Chow KM, Lui SF et al (2002) Independent effects of residual renal function and dialysis adequacy on dietary micronutrient intakes in patients receiving continuous ambulatory peritoneal dialysis. Am J Clin Nutr 76(3):569–576

    CAS  PubMed  Google Scholar 

  41. Yang PY, Lin JL, Lin-Tan DT, Hsu CW, Yen TH, Chen KH et al (2009) Residual daily urine volume association with inflammation and nutrition status in maintenance hemodialysis patients. Ren Fail 31(6):423–430

    PubMed  Google Scholar 

  42. Katalinic L, Premuzic V, Basic-Jukic N, Barisic I, Jelakovic B (2019) Hypoproteinemia as a factor in assessing malnutrition and predicting survival on hemodialysis. J Artif Organs 22(3):230–236

    PubMed  Google Scholar 

  43. Sikorska D, Pawlaczyk K, Olewicz-Gawlik A, Czepulis N, Posnik B, Baum E et al (2016) The importance of residual renal function in peritoneal dialysis. Int Urol Nephrol 48(12):2101–2108

    CAS  PubMed  Google Scholar 

  44. Liu Y, Coresh J, Eustace JA, Longenecker JC, Jaar B, Fink NE et al (2004) Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA 291(4):451–459

    CAS  PubMed  Google Scholar 

  45. Kagan A, Elimalech E, Lemer Z, Fink A, Bar-Khayim Y (1997) Residual renal function affects lipid profile in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int 17(3):243–249

    CAS  PubMed  Google Scholar 

  46. Cotovio P, Rocha A, Rodrigues A (2011) Peritoneal dialysis in diabetics: there is room for more. Int J Nephrol 2011:914849

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Szeto CC, Chow KM, Kwan BC, Chung KY, Leung CB, Li PK (2007) New-onset hyperglycemia in nondiabetic chinese patients started on peritoneal dialysis. Am J Kidney Dis 49(4):524–532

    CAS  PubMed  Google Scholar 

  48. Chung SH, Han DC, Noh H, Jeon JS, Kwon SH, Lindholm B et al (2015) High blood glucose independent of pre-existing diabetic status predicts mortality in patients initiating peritoneal dialysis therapy. Int Urol Nephrol 47(6):1017–1024

    CAS  PubMed  Google Scholar 

  49. Yang MH, Wang HY, Lu CY, Tsai WC, Lin PC, Su SB et al (2013) Proteomic profiling for peritoneal dialysate: differential protein expression in diabetes mellitus. Biomed Res Int 2013:642964

    PubMed  PubMed Central  Google Scholar 

  50. Naderi N, Kleine CE, Park C, Hsiung JT, Soohoo M, Tantisattamo E et al (2018) Obesity paradox in advanced kidney disease: from bedside to the bench. Prog Cardiovasc Dis 61(2):168–181

    PubMed  PubMed Central  Google Scholar 

  51. Kramer HJ, Saranathan A, Luke A, Durazo-Arvizu RA, Guichan C, Hou S et al (2006) Increasing body mass index and obesity in the incident ESRD population. J Am Soc Nephrol 17(5):1453–1459

    PubMed  Google Scholar 

  52. Drechsler C, de Mutsert R, Grootendorst DC, Boeschoten EW, Krediet RT, le Cessie S et al (2009) Association of body mass index with decline in residual kidney function after initiation of dialysis. Am J Kidney Dis 53(6):1014–1023

    PubMed  Google Scholar 

  53. Kopple JD, Zhu X, Lew NL, Lowrie EG (1999) Body weight-for-height relationships predict mortality in maintenance hemodialysis patients. Kidney Int 56(3):1136–1148

    CAS  PubMed  Google Scholar 

  54. Kim JK, Kim YS, Song YR, Kim HJ, Kim SG, Moon SJ (2015) Excessive weight gain during the first year of peritoneal dialysis is associated with inflammation, diabetes mellitus, and a rapid decrease in residual renal function. PLoS One 10(9):e0139033

    PubMed  PubMed Central  Google Scholar 

  55. Morales E, Praga M (2012) The effect of weight loss in obesity and chronic kidney disease. Curr Hypertens Rep 14(2):170–176

    PubMed  Google Scholar 

  56. Sabatino A, Regolisti G, Brusasco I, Cabassi A, Morabito S, Fiaccadori E (2015) Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant 30(6):924–933

    CAS  PubMed  Google Scholar 

  57. Krishnamurthy VM, Wei G, Baird BC, Murtaugh M, Chonchol MB, Raphael KL et al (2012) High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int 81(3):300–306

    CAS  PubMed  Google Scholar 

  58. Mafra D, Borges N, Alvarenga L, Esgalhado M, Cardozo L, Lindholm B, et al. Dietary components that may influence the disturbed gut microbiota in chronic kidney disease. Nutrients. 2019;11(3).

  59. Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y (1996) Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74(2):349–355

    CAS  PubMed  Google Scholar 

  60. Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G (2014) The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol 25(9):1897–1907

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee YJ, Okuda Y, Sy J, Lee YK, Obi Y, Cho S et al (2020) Ultrafiltration rate, residual kidney function, and survival among patients treated with reduced-frequency hemodialysis. Am J Kidney Dis 75(3):342–350

    PubMed  Google Scholar 

  62. Shahab I, Khanna R, Nolph KD (2006) Peritoneal dialysis or hemodialysis? A dilemma for the nephrologist. Adv Perit Dial 22:180–185

    PubMed  Google Scholar 

  63. Tsujikawa H, Tanaka S, Hara M, Kawai Y, Matsukuma Y, Torisu K et al (2020) Association of lower serum bilirubin with loss of residual kidney function in peritoneal dialysis patients. Ther Apher Dial 24(2):202–207

    CAS  PubMed  Google Scholar 

  64. Cho Y, Johnson DW, Vesey DA, Hawley CM, Clarke M, Topley N et al (2015) Utility of urinary biomarkers in predicting loss of residual renal function: the balANZ trial. Perit Dial Int 35(2):159–171

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Szeto CC, Kwan BC, Chow KM, Chung S, Yu V, Cheng PM et al (2015) Predictors of residual renal function decline in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int 35(2):180–188

    PubMed  PubMed Central  Google Scholar 

  66. Kim JK, Kim SG, Kim MG, Kim SE, Kim SJ, Kim HJ et al (2012) Left ventricular diastolic dysfunction as a predictor of rapid decline of residual renal function in patients with peritoneal dialysis. J Am Soc Echocardiogr 25(4):411–420

    PubMed  Google Scholar 

  67. Zhang L, Zeng X, Fu P, Wu HM. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for preserving residual kidney function in peritoneal dialysis patients. Cochrane Database Syst Rev. 2014(6):CD009120.

  68. Ding L, Yang J, Li L, Yang Y (2020) Effects of ACEIs and ARBs on the residual renal function in peritoneal dialysis patients: a meta-analysis of randomized controlled trials. Biomed Res Int 2020:6762029

    PubMed  PubMed Central  Google Scholar 

  69. Liu Y, Ma X, Zheng J, Jia J, Yan T (2017) Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on cardiovascular events and residual renal function in dialysis patients: a meta-analysis of randomised controlled trials. BMC Nephrol 18(1):206

    PubMed  PubMed Central  Google Scholar 

  70. Fang W, Oreopoulos DG, Bargman JM (2008) Use of ACE inhibitors or angiotensin receptor blockers and survival in patients on peritoneal dialysis. Nephrol Dial Transplant 23(11):3704–3710

    CAS  PubMed  Google Scholar 

  71. Xydakis D, Papadogiannakis A, Sfakianaki M, Kostakis K, Stylianou K, Petrakis I et al (2013) Residual renal function in hemodialysis patients: the role of Angiotensin-converting enzyme inhibitor in its preservation. ISRN Nephrol 2013:184527

    PubMed  Google Scholar 

  72. Kjaergaard KD, Peters CD, Jespersen B, Tietze IN, Madsen JK, Pedersen BB et al (2014) Angiotensin blockade and progressive loss of kidney function in hemodialysis patients: a randomized controlled trial. Am J Kidney Dis 64(6):892–901

    CAS  PubMed  Google Scholar 

  73. Yoo KD, Kim CT, Kwon S, Lee J, Oh YK, Kang SW et al (2019) Renin angiotensin aldosterone system blockades does not protect residual renal function in patients with hemodialysis at 1 year after dialysis initiation: a prospective observational cohort study. Sci Rep 9(1):18103

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahmed AK, Kamath NS, El Kossi M, El Nahas AM (2010) The impact of stopping inhibitors of the renin-angiotensin system in patients with advanced chronic kidney disease. Nephrol Dial Transplant 25(12):3977–3982

    CAS  PubMed  Google Scholar 

  75. Fu EL, Evans M, Clase CM, Tomlinson LA, van Diepen M, Dekker FW et al (2021) Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: a nationwide study. J Am Soc Nephrol 32(2):424–435

    CAS  PubMed  Google Scholar 

  76. Hidaka H, Nakao T (2003) Preservation of residual renal function and factors affecting its decline in patients on peritoneal dialysis. Nephrol (Carlton) 8(4):184–191

    Google Scholar 

  77. Htay H, Cho Y, Pascoe EM, Darssan D, Hawley C, Johnson DW et al (2017) Predictors of residual renal function decline in peritoneal dialysis patients: the. Perit Dial Int 37(3):283–289

    PubMed  Google Scholar 

  78. Ok E, Levin NW, Asci G, Chazot C, Toz H, Ozkahya M (2017) Interplay of volume, blood pressure, organ ischemia, residual renal function, and diet: certainties and uncertainties with dialytic management. Semin Dial 30(5):420–429

    PubMed  Google Scholar 

  79. van Olden RW, van Meyel JJ, Gerlag PG (1992) Acute and long-term effects of therapy with high-dose furosemide in chronic hemodialysis patients. Am J Nephrol 12(5):351–356

    PubMed  Google Scholar 

  80. Medcalf JF, Harris KP, Walls J (2001) Role of diuretics in the preservation of residual renal function in patients on continuous ambulatory peritoneal dialysis. Kidney Int 59(3):1128–1133

    CAS  PubMed  Google Scholar 

  81. Bragg-Gresham JL, Fissell RB, Mason NA, Bailie GR, Gillespie BW, Wizemann V et al (2007) Diuretic use, residual renal function, and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Pattern Study (DOPPS). Am J Kidney Dis 49(3):426–431

    PubMed  Google Scholar 

  82. Liao CT, Shiao CC, Huang JW, Hung KY, Chuang HF, Chen YM et al (2008) Predictors of faster decline of residual renal function in Taiwanese peritoneal dialysis patients. Perit Dial Int 28(Suppl 3):S191–S195

    CAS  PubMed  Google Scholar 

  83. Mokoli VM, Sumaili EK, Lepira FB, Mbutiwi FIN, Makulo JRR, Bukabau JB et al (2018) Factors associated with residual urine volume preservation in patients undergoing hemodialysis for end-stage kidney disease in Kinshasa. BMC Nephrol 19(1):68

    PubMed  PubMed Central  Google Scholar 

  84. Chen W, Wang F, Zhao Y, Zhang L, Chen Z, Dai M (2021) Efficacy and safety of furosemide for prevention of intradialytic hypotension in haemodialysis patients: protocol for a multicentre randomised controlled trial. BMJ Open 11(7):e048015

    PubMed  PubMed Central  Google Scholar 

  85. Hiramatsu T, Hobo A, Hayasaki T, Kabu K, Furuta S (2015) A Pilot study examining the effects of tolvaptan on residual renal function in peritoneal dialysis for diabetics. Perit Dial Int 35(5):552–558

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hiramatsu T, Asai K, Ozeki A, Saka M, Hobo A, Furuta S (2015) The vasopressin 2 receptor antagonist tolvaptan improves nutrition and inflammatory states in peritoneal dialysis patients with diabetes mellitus. Adv Perit Dial 31:30–33

    CAS  PubMed  Google Scholar 

  87. Mori T, Oba I, Koizumi K, Kodama M, Shimanuki M, Tanno M et al (2013) Beneficial role of tolvaptan in the control of body fluids without reductions in residual renal function in patients undergoing peritoneal dialysis. Adv Perit Dial 29:33–37

    PubMed  Google Scholar 

  88. Lee Y, Chung SW, Park S, Ryu H, Lee H, Kim DK et al (2019) Incremental peritoneal dialysis may be beneficial for preserving residual renal function compared to full-dose peritoneal dialysis. Sci Rep 9(1):10105

    PubMed  PubMed Central  Google Scholar 

  89. Golper TA, Mehrotra R (2015) The intact nephron hypothesis in reverse: an argument to support incremental dialysis. Nephrol Dial Transplant 30(10):1602–1604

    PubMed  Google Scholar 

  90. Sandrini M, Vizzardi V, Valerio F, Ravera S, Manili L, Zubani R et al (2016) Incremental peritoneal dialysis: a 10 year single-centre experience. J Nephrol 29(6):871–879

    PubMed  PubMed Central  Google Scholar 

  91. Garofalo C, Borrelli S, De Stefano T, Provenzano M, Andreucci M, Cabiddu G et al (2019) Incremental dialysis in ESRD: systematic review and meta-analysis. J Nephrol 32(5):823–836

    PubMed  Google Scholar 

  92. Yan H, Fang W, Lin A, Cao L, Ni Z, Qian J (2017) Three versus 4 daily exchanges and residual kidney function decline in incident CAPD patients: a randomized controlled trial. Am J Kidney Dis 69(4):506–513

    PubMed  Google Scholar 

  93. Cho Y, Johnson DW, Craig JC, Strippoli GF, Badve SV, Wiggins KJ. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Datab Syst Rev. 2014(3):CD007554.

  94. Chang TI, Ryu DR, Yoo TH, Kim HJ, Kang EW, Kim H et al (2016) Effect of Icodextrin solution on the preservation of residual renal function in peritoneal dialysis patients: a randomized controlled study. Med (Baltim) 95(13):e2991

    CAS  Google Scholar 

  95. Yoon HE, Chang YK, Shin SJ, Choi BS, Kim BS, Park CW et al (2014) Benefits of a continuous ambulatory peritoneal dialysis (CAPD) technique with one icodextrin-containing and two biocompatible glucose-containing dialysates for preservation of residual renal function and biocompatibility in incident CAPD patients. J Korean Med Sci 29(9):1217–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Cho Y, Johnson DW, Badve S, Craig JC, Strippoli GF, Wiggins KJ (2013) Impact of icodextrin on clinical outcomes in peritoneal dialysis: a systematic review of randomized controlled trials. Nephrol Dial Transplant 28(7):1899–1907

    CAS  PubMed  Google Scholar 

  97. Qi H, Xu C, Yan H, Ma J (2011) Comparison of icodextrin and glucose solutions for long dwell exchange in peritoneal dialysis: a meta-analysis of randomized controlled trials. Perit Dial Int 31(2):179–188

    CAS  PubMed  Google Scholar 

  98. Murea M, Moossavi S, Garneata L, Kalantar-Zadeh K (2020) Narrative review of incremental hemodialysis. Kidney Int Rep 5(2):135–148

    PubMed  Google Scholar 

  99. Lin YF, Huang JW, Wu MS, Chu TS, Lin SL, Chen YM et al (2009) Comparison of residual renal function in patients undergoing twice-weekly versus three-times-weekly haemodialysis. Nephrol (Carlton) 14(1):59–64

    CAS  Google Scholar 

  100. Zhang M, Wang M, Li H, Yu P, Yuan L, Hao C et al (2014) Association of initial twice-weekly hemodialysis treatment with preservation of residual kidney function in ESRD patients. Am J Nephrol 40(2):140–150

    CAS  PubMed  Google Scholar 

  101. Vilar E, Kaja Kamal RM, Fotheringham J, Busby A, Berdeprado J, Kislowska E et al (2022) A multicenter feasibility randomized controlled trial to assess the impact of incremental versus conventional initiation of hemodialysis on residual kidney function. Kidney Int 101(3):615–625

    PubMed  Google Scholar 

  102. Basile C, Casino FG, ERA-EDTA EWGo. Incremental haemodialysis and residual kidney function: more and more observations but no trials. Nephrol Dial Transplant. 2019;34(11):1806–11.

  103. Bolasco P, Cupisti A, Locatelli F, Caria S, Kalantar-Zadeh K (2016) Dietary management of incremental transition to dialysis therapy: once-weekly hemodialysis combined with low-protein diet. J Ren Nutr 26(6):352–359

    PubMed  Google Scholar 

  104. Caria S, Cupisti A, Sau G, Bolasco P (2014) The incremental treatment of ESRD: a low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol 15:172

    PubMed  PubMed Central  Google Scholar 

  105. Hartmann J. Biocompatible membranes preserve residual renal function in patients undergoing regular hemodialysis. In: Fricke H (eds) American Journal of Kidney Diseases 1997;336–73.

  106. McKane W, Chandna SM, Tattersall JE, Greenwood RN, Farrington K (2002) Identical decline of residual renal function in high-flux biocompatible hemodialysis and CAPD. Kidney Int 61(1):256–265

    CAS  PubMed  Google Scholar 

  107. Canaud B (2008) Residual renal function: the delicate balance between benefits and risks. Nephrol Dial Transplant 23(6):1801–1805

    PubMed  Google Scholar 

Download references

Funding

No funding agency granted the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Basile.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

No verbal and written informed consent was necessary for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanriover, C., Ucku, D., Basile, C. et al. On the importance of the interplay of residual renal function with clinical outcomes in end-stage kidney disease. J Nephrol 35, 2191–2204 (2022). https://doi.org/10.1007/s40620-022-01388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-022-01388-9

Keywords

Navigation