Skip to main content

Advertisement

Log in

Nutrient sensing, signaling transduction, and autophagy in podocyte injury: implications for kidney disease

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Podocytes are terminally differentiated epithelial cells of the renal glomerular tuft and these highly specialized cells are essential for the integrity of the slit diaphragm. The biological function of podocytes is primarily based on a complex ramified structure that requires sufficient nutrients and a large supply of energy in support of their unique structure and function in the glomeruli. Of note, the dysregulation of nutrient signaling and energy metabolic pathways in podocytes has been associated with a range of kidney diseases i.e., diabetic nephropathy. Therefore, nutrient-related and energy metabolic signaling pathways are critical to maintaining podocyte homeostasis and the pathogenesis of podocyte injury. Recently, a growing body of evidence has indicated that nutrient starvation induces autophagy, which suggests crosstalk between nutritional signaling with the modulation of autophagy for podocytes to adapt to nutrient deprivation. In this review, the current knowledge and advancement in the understanding of nutrient sensing, signaling, and autophagy in the podocyte biology, injury, and pathogenesis of kidney diseases is summarized. Based on the existing findings, the implications and perspective to target these signaling pathways and autophagy in podocytes during the development of novel preventive and therapeutic strategies in patients with podocyte injury-associated kidney diseases are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sol M, Kamps J, van den Born J, van den Heuvel MC, van der Vlag J, Krenning G, Hillebrands JL (2020) Glomerular endothelial cells as instigators of glomerular sclerotic diseases. Front Pharmacol 11:573557. https://doi.org/10.3389/fphar.2020.573557

    Article  CAS  Google Scholar 

  2. Mahtal N, Lenoir O, Tharaux PL (2021) Glomerular endothelial cell crosstalk with podocytes in diabetic kidney disease. Front Med (Lausanne) 8:659013. https://doi.org/10.3389/fmed.2021.659013

    Article  Google Scholar 

  3. Ozawa S, Ueda S, Imamura H, Mori K, Asanuma K, Yanagita M, Nakagawa T (2015) Glycolysis, but not mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes. Sci Rep 5:18575. https://doi.org/10.1038/srep18575

    Article  CAS  Google Scholar 

  4. Imasawa T, Rossignol R (2013) Podocyte energy metabolism and glomerular diseases. Int J Biochem Cell Biol 45(9):2109–2118. https://doi.org/10.1016/j.biocel.2013.06.013

    Article  CAS  Google Scholar 

  5. Coward R, Fornoni A (2015) Insulin signaling: implications for podocyte biology in diabetic kidney disease. Curr Opin Nephrol Hypertens 24(1):104–110. https://doi.org/10.1097/mnh.0000000000000078

    Article  CAS  Google Scholar 

  6. Kurayama R, Ito N, Nishibori Y, Fukuhara D, Akimoto Y, Higashihara E, Ishigaki Y, Sai Y, Miyamoto K, Endou H, Kanai Y, Yan K (2011) Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab Investig 91(7):992–1006. https://doi.org/10.1038/labinvest.2011.43

    Article  CAS  Google Scholar 

  7. Casalena GA, Yu L, Gil R, Rodriguez S, Sosa S, Janssen W, Azeloglu EU, Leventhal JS, Daehn IS (2020) The diabetic microenvironment causes mitochondrial oxidative stress in glomerular endothelial cells and pathological crosstalk with podocytes. Cell Commun Signal 18(1):105. https://doi.org/10.1186/s12964-020-00605-x

    Article  CAS  Google Scholar 

  8. Szrejder M, Piwkowska A (2019) AMPK signalling: implications for podocyte biology in diabetic nephropathy. Biol Cell 111(5):109–120. https://doi.org/10.1111/boc.201800077

    Article  Google Scholar 

  9. Yan K, Ito N, Nakajo A, Kurayama R, Fukuhara D, Nishibori Y, Kudo A, Akimoto Y, Takenaka H (2012) The struggle for energy in podocytes leads to nephrotic syndrome. Cell Cycle 11(8):1504–1511. https://doi.org/10.4161/cc.19825

    Article  CAS  Google Scholar 

  10. Yasuda-Yamahara M, Kume S, Maegawa H (2021) Roles of mTOR in diabetic kidney disease. Antioxidants (Basel). https://doi.org/10.3390/antiox10020321

    Article  Google Scholar 

  11. Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK, Dong Z (2018) Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 75(4):669–688. https://doi.org/10.1007/s00018-017-2639-1

    Article  CAS  Google Scholar 

  12. Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, Blattner SM, Ikenoue T, Rüegg MA, Hall MN, Kwiatkowski DJ, Rastaldi MP, Huber TB, Kretzler M, Holzman LB, Wiggins RC, Guan KL (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Investig 121(6):2181–2196. https://doi.org/10.1172/jci44771

    Article  CAS  Google Scholar 

  13. Yu SY, Qi R, Zhao H (2013) Losartan reverses glomerular podocytes injury induced by AngII via stabilizing the expression of GLUT1. Mol Biol Rep 40(11):6295–6301. https://doi.org/10.1007/s11033-013-2742-9

    Article  CAS  Google Scholar 

  14. Greka A, Mundel P (2012) Cell biology and pathology of podocytes. Annu Rev Physiol 74:299–323. https://doi.org/10.1146/annurev-physiol-020911-153238

    Article  CAS  Google Scholar 

  15. Müller-Deile J, Schiffer M (2014) The podocyte power-plant disaster and its contribution to glomerulopathy. Front Endocrinol (Lausanne) 5:209. https://doi.org/10.3389/fendo.2014.00209

    Article  Google Scholar 

  16. Abe Y, Sakairi T, Kajiyama H, Shrivastav S, Beeson C, Kopp JB (2010) Bioenergetic characterization of mouse podocytes. Am J Physiol Cell Physiol 299(2):C464-476. https://doi.org/10.1152/ajpcell.00563.2009

    Article  CAS  Google Scholar 

  17. Stieger N, Worthmann K, Teng B, Engeli S, Das AM, Haller H, Schiffer M (2012) Impact of high glucose and transforming growth factor-β on bioenergetic profiles in podocytes. Metabolism 61(8):1073–1086. https://doi.org/10.1016/j.metabol.2011.12.003

    Article  CAS  Google Scholar 

  18. Giardino L, Armelloni S, Corbelli A, Mattinzoli D, Zennaro C, Guerrot D, Tourrel F, Ikehata M, Li M, Berra S, Carraro M, Messa P, Rastaldi MP (2009) Podocyte glutamatergic signaling contributes to the function of the glomerular filtration barrier. J Am Soc Nephrol 20(9):1929–1940. https://doi.org/10.1681/asn.2008121286

    Article  CAS  Google Scholar 

  19. McCracken AN, Edinger AL (2013) Nutrient transporters: the Achilles’ heel of anabolism. Trends Endocrinol Metab 24(4):200–208. https://doi.org/10.1016/j.tem.2013.01.002

    Article  CAS  Google Scholar 

  20. Audzeyenka I, Rogacka D, Rachubik P, Typiak M, Rychłowski M, Angielski S, Piwkowska A (2021) The PKGIα-Rac1 pathway is a novel regulator of insulin-dependent glucose uptake in cultured rat podocytes. J Cell Physiol 236(6):4655–4668. https://doi.org/10.1002/jcp.30188

    Article  CAS  Google Scholar 

  21. Lewko B, Bryl E, Witkowski JM, Latawiec E, Gołos M, Endlich N, Hähnel B, Koksch C, Angielski S, Kriz W, Stepinski J (2005) Characterization of glucose uptake by cultured rat podocytes. Kidney Blood Press Res 28(1):1–7. https://doi.org/10.1159/000080889

    Article  CAS  Google Scholar 

  22. Wasik AA, Lehtonen S (2018) Glucose transporters in diabetic kidney disease-friends or foes? Front Endocrinol (Lausanne) 9:155. https://doi.org/10.3389/fendo.2018.00155

    Article  Google Scholar 

  23. Schiffer M, Susztak K, Ranalletta M, Raff AC, Böttinger EP, Charron MJ (2005) Localization of the GLUT8 glucose transporter in murine kidney and regulation in vivo in nondiabetic and diabetic conditions. Am J Physiol Ren Physiol 289(1):F186-193. https://doi.org/10.1152/ajprenal.00234.2004

    Article  CAS  Google Scholar 

  24. Gloy J, Reitinger S, Fischer KG, Schreiber R, Boucherot A, Kunzelmann K, Mundel P, Pavenstädt H (2000) Amino acid transport in podocytes. Am J Physiol Ren Physiol 278(6):F999-f1005. https://doi.org/10.1152/ajprenal.2000.278.6.F999

    Article  CAS  Google Scholar 

  25. Sekine Y, Nishibori Y, Akimoto Y, Kudo A, Ito N, Fukuhara D, Kurayama R, Higashihara E, Babu E, Kanai Y, Asanuma K, Nagata M, Majumdar A, Tryggvason K, Yan K (2009) Amino acid transporter LAT3 is required for podocyte development and function. J Am Soc Nephrol 20(7):1586–1596. https://doi.org/10.1681/asn.2008070809

    Article  CAS  Google Scholar 

  26. Yokoi H, Yanagita M (2016) Targeting the fatty acid transport protein CD36, a class B scavenger receptor, in the treatment of renal disease. Kidney Int 89(4):740–742. https://doi.org/10.1016/j.kint.2016.01.009

    Article  CAS  Google Scholar 

  27. Hua W, Huang HZ, Tan LT, Wan JM, Gui HB, Zhao L, Ruan XZ, Chen XM, Du XG (2015) CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress. PLoS ONE 10(5):e0127507. https://doi.org/10.1371/journal.pone.0127507

    Article  CAS  Google Scholar 

  28. Gai Z, Wang T, Visentin M, Kullak-Ublick GA, Fu X, Wang Z (2019) Lipid accumulation and chronic kidney disease. Nutrients. https://doi.org/10.3390/nu11040722

    Article  Google Scholar 

  29. Lin PH, Duann P (2020) Dyslipidemia in kidney disorders: perspectives on mitochondria homeostasis and therapeutic opportunities. Front Physiol 11:1050. https://doi.org/10.3389/fphys.2020.01050

    Article  Google Scholar 

  30. Yokoi H, Yanagita M (2014) Decrease of muscle volume in chronic kidney disease: the role of mitochondria in skeletal muscle. Kidney Int 85(6):1258–1260. https://doi.org/10.1038/ki.2013.539

    Article  CAS  Google Scholar 

  31. Pawluczyk IZ, Pervez A, Ghaderi Najafabadi M, Saleem MA, Topham PS (2014) The effect of albumin on podocytes: the role of the fatty acid moiety and the potential role of CD36 scavenger receptor. Exp Cell Res 326(2):251–258. https://doi.org/10.1016/j.yexcr.2014.04.016

    Article  CAS  Google Scholar 

  32. Lay AC, Hurcombe JA, Betin VMS, Barrington F, Rollason R, Ni L, Gillam L, Pearson GME, Østergaard MV, Hamidi H, Lennon R, Welsh GI, Coward RJM (2017) Prolonged exposure of mouse and human podocytes to insulin induces insulin resistance through lysosomal and proteasomal degradation of the insulin receptor. Diabetologia 60(11):2299–2311. https://doi.org/10.1007/s00125-017-4394-0

    Article  CAS  Google Scholar 

  33. Piwkowska A, Rogacka D, Angielski S, Jankowski M (2014) Insulin stimulates glucose transport via protein kinase G type I alpha-dependent pathway in podocytes. Biochem Biophys Res Commun 446(1):328–334. https://doi.org/10.1016/j.bbrc.2014.02.108

    Article  CAS  Google Scholar 

  34. Coward RJ, Welsh GI, Yang J, Tasman C, Lennon R, Koziell A, Satchell S, Holman GD, Kerjaschki D, Tavaré JM, Mathieson PW, Saleem MA (2005) The human glomerular podocyte is a novel target for insulin action. Diabetes 54(11):3095–3102. https://doi.org/10.2337/diabetes.54.11.3095

    Article  CAS  Google Scholar 

  35. Welsh GI, Hale LJ, Eremina V, Jeansson M, Maezawa Y, Lennon R, Pons DA, Owen RJ, Satchell SC, Miles MJ, Caunt CJ, McArdle CA, Pavenstädt H, Tavaré JM, Herzenberg AM, Kahn CR, Mathieson PW, Quaggin SE, Saleem MA, Coward RJM (2010) Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab 12(4):329–340. https://doi.org/10.1016/j.cmet.2010.08.015

    Article  CAS  Google Scholar 

  36. Santamaria B, Marquez E, Lay A, Carew RM, González-Rodríguez Á, Welsh GI, Ni L, Hale LJ, Ortiz A, Saleem MA, Brazil DP, Coward RJ (1853) Valverde Á M (2015) IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes. Biochim Biophys Acta 12:3224–3234. https://doi.org/10.1016/j.bbamcr.2015.09.020

    Article  CAS  Google Scholar 

  37. Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus. N Engl J Med 341(4):248–257. https://doi.org/10.1056/nejm199907223410406

    Article  CAS  Google Scholar 

  38. Le Marchand-Brustel Y, Tanti JF, Cormont M, Ricort JM, Grémeaux T, Grillo S (1999) From insulin receptor signalling to Glut 4 translocation abnormalities in obesity and insulin resistance. J Recept Signal Transduct Res 19(1–4):217–228. https://doi.org/10.3109/10799899909036647

    Article  Google Scholar 

  39. Machado-Neto JA, Fenerich BA, Rodrigues Alves APN, Fernandes JC, Scopim-Ribeiro R, Coelho-Silva JL, Traina F (2018) Insulin substrate receptor (IRS) proteins in normal and malignant hematopoiesis. Clinics (Sao Paulo) 73(suppl 1):e566s. https://doi.org/10.6061/clinics/2018/e566s

    Article  Google Scholar 

  40. Fasshauer M, Klein J, Ueki K, Kriauciunas KM, Benito M, White MF, Kahn CR (2000) Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes. J Biol Chem 275(33):25494–25501. https://doi.org/10.1074/jbc.M004046200

    Article  CAS  Google Scholar 

  41. Piwkowska A, Rogacka D, Kasztan M, Angielski S, Jankowski M (2013) Insulin increases glomerular filtration barrier permeability through dimerization of protein kinase G type Iα subunits. Biochim Biophys Acta 1832(6):791–804. https://doi.org/10.1016/j.bbadis.2013.02.011

    Article  CAS  Google Scholar 

  42. Piwkowska A, Rogacka D, Audzeyenka I, Kasztan M, Angielski S, Jankowski M (2015) Insulin increases glomerular filtration barrier permeability through PKGIα-dependent mobilization of BKCa channels in cultured rat podocytes. Biochim Biophys Acta 1852(8):1599–1609. https://doi.org/10.1016/j.bbadis.2015.04.024

    Article  CAS  Google Scholar 

  43. González-García I, Gruber T, García-Cáceres C (2021) Insulin action on astrocytes: from energy homeostasis to behaviour. J Neuroendocrinol 33(4):e12953. https://doi.org/10.1111/jne.12953

    Article  CAS  Google Scholar 

  44. Kume S, Thomas MC, Koya D (2012) Nutrient sensing, autophagy, and diabetic nephropathy. Diabetes 61(1):23–29. https://doi.org/10.2337/db11-0555

    Article  CAS  Google Scholar 

  45. Lin Q, Ma Y, Chen Z, Hu J, Chen C, Fan Y, Liang W, Ding G (2020) Sestrin-2 regulates podocyte mitochondrial dysfunction and apoptosis under high-glucose conditions via AMPK. Int J Mol Med 45(5):1361–1372. https://doi.org/10.3892/ijmm.2020.4508

    Article  CAS  Google Scholar 

  46. Li C, Guan XM, Wang RY, Xie YS, Zhou H, Ni WJ, Tang LQ (2020) Berberine mitigates high glucose-induced podocyte apoptosis by modulating autophagy via the mTOR/P70S6K/4EBP1 pathway. Life Sci 243:117277. https://doi.org/10.1016/j.lfs.2020.117277

    Article  CAS  Google Scholar 

  47. Bhagwat SV, Gokhale PC, Crew AP, Cooke A, Yao Y, Mantis C, Kahler J, Workman J, Bittner M, Dudkin L, Epstein DM, Gibson NW, Wild R, Arnold LD, Houghton PJ, Pachter JA (2011) Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer Ther 10(8):1394–1406. https://doi.org/10.1158/1535-7163.mct-10-1099

    Article  CAS  Google Scholar 

  48. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484. https://doi.org/10.1016/j.cell.2006.01.016

    Article  CAS  Google Scholar 

  49. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40(2):310–322. https://doi.org/10.1016/j.molcel.2010.09.026

    Article  CAS  Google Scholar 

  50. Zhou B, Leng Y, Lei SQ, Xia ZY (2017) AMPK activation restores ischemic post-conditioning cardioprotection in STZ-induced type 1 diabetic rats: role of autophagy. Mol Med Rep 16(3):3648–3656. https://doi.org/10.3892/mmr.2017.7033

    Article  CAS  Google Scholar 

  51. Buller CL, Heilig CW, Brosius FC 3rd (2011) GLUT1 enhances mTOR activity independently of TSC2 and AMPK. Am J Physiol Ren Physiol 301(3):F588-596. https://doi.org/10.1152/ajprenal.00472.2010

    Article  CAS  Google Scholar 

  52. Guzman J, Jauregui AN, Merscher-Gomez S, Maiguel D, Muresan C, Mitrofanova A, Diez-Sampedro A, Szust J, Yoo TH, Villarreal R, Pedigo C, Molano RD, Johnson K, Kahn B, Hartleben B, Huber TB, Saha J, Burke GW 3rd, Abel ED, Brosius FC, Fornoni A (2014) Podocyte-specific GLUT4-deficient mice have fewer and larger podocytes and are protected from diabetic nephropathy. Diabetes 63(2):701–714. https://doi.org/10.2337/db13-0752

    Article  CAS  Google Scholar 

  53. Abe Y, Sakairi T, Beeson C, Kopp JB (2013) TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway. Am J Physiol Ren Physiol 305(10):F1477-1490. https://doi.org/10.1152/ajprenal.00182.2013

    Article  CAS  Google Scholar 

  54. Das R, Xu S, Nguyen TT, Quan X, Choi SK, Kim SJ, Lee EY, Cha SK, Park KS (2015) Transforming growth factor β1-induced Apoptosis in podocytes via the extracellular signal-regulated kinase-mammalian target of rapamycin complex 1-NADPH oxidase 4 axis. J Biol Chem 290(52):30830–30842. https://doi.org/10.1074/jbc.M115.703116

    Article  CAS  Google Scholar 

  55. Ito N, Nishibori Y, Ito Y, Takagi H, Akimoto Y, Kudo A, Asanuma K, Sai Y, Miyamoto K, Takenaka H, Yan K (2011) mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab Investig 91(11):1584–1595. https://doi.org/10.1038/labinvest.2011.135

    Article  CAS  Google Scholar 

  56. Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 112(8):417–428. https://doi.org/10.1042/cs20060342

    Article  CAS  Google Scholar 

  57. Ambinathan JPN, Sridhar VS, Lytvyn Y, Lovblom LE, Liu H, Bjornstad P, Perkins BA, Lovshin JA, Cherney DZI (2021) Relationships between inflammation, hemodynamic function and RAAS in longstanding type 1 diabetes and diabetic kidney disease. J Diabetes Complicat 35(5):107880. https://doi.org/10.1016/j.jdiacomp.2021.107880

    Article  CAS  Google Scholar 

  58. Gnudi L, Thomas SM, Viberti G (2007) Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism. J Am Soc Nephrol 18(8):2226–2232. https://doi.org/10.1681/asn.2006121362

    Article  CAS  Google Scholar 

  59. Heilig CW, Concepcion LA, Riser BL, Freytag SO, Zhu M, Cortes P (1995) Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Investig 96(4):1802–1814. https://doi.org/10.1172/jci118226

    Article  CAS  Google Scholar 

  60. Lewko B, Maryn A, Latawiec E, Daca A, Rybczynska A (2018) Angiotensin II modulates podocyte glucose transport. Front Endocrinol (Lausanne) 9:418. https://doi.org/10.3389/fendo.2018.00418

    Article  Google Scholar 

  61. Souza MS, Machado UF, Okamoto M, Bertoluci MC, Ponpermeyer C, Leguisamo N, Azambuja F, Irigoyen MC, Schaan BD (2008) Reduced cortical renal GLUT1 expression induced by angiotensin-converting enzyme inhibition in diabetic spontaneously hypertensive rats. Braz J Med Biol Res 41(11):960–968. https://doi.org/10.1590/s0100-879x2008001100004

    Article  CAS  Google Scholar 

  62. da Silva AS, Dias LD, Borges JF, Markoski MM, de Souza MS, Irigoyen MC, Machado UF, Schaan BD (2013) Renal GLUT1 reduction depends on angiotensin-converting enzyme inhibition in diabetic hypertensive rats. Life Sci 92(24–26):1174–1179. https://doi.org/10.1016/j.lfs.2013.05.001

    Article  CAS  Google Scholar 

  63. Rosell A, Meury M, Álvarez-Marimon E, Costa M, Pérez-Cano L, Zorzano A, Fernández-Recio J, Palacín M, Fotiadis D (2014) Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc. Proc Natl Acad Sci U S A 111(8):2966–2971. https://doi.org/10.1073/pnas.1323779111

    Article  CAS  Google Scholar 

  64. Pszczolkowski VL, Zhang J, Pignato KA, Meyer EJ, Kurth MM, Lin A, Arriola Apelo SI (2020) Insulin potentiates essential amino acids effects on mechanistic target of rapamycin complex 1 signaling in MAC-T cells. J Dairy Sci 103(12):11988–12002. https://doi.org/10.3168/jds.2020-18920

    Article  CAS  Google Scholar 

  65. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945. https://doi.org/10.1101/gad.1212704

    Article  CAS  Google Scholar 

  66. Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24(1):200–216. https://doi.org/10.1128/mcb.24.1.200-216.2004

    Article  CAS  Google Scholar 

  67. Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14(3):133–139. https://doi.org/10.1038/nrm3522

    Article  CAS  Google Scholar 

  68. Babu E, Kanai Y, Chairoungdua A, Kim DK, Iribe Y, Tangtrongsup S, Jutabha P, Li Y, Ahmed N, Sakamoto S, Anzai N, Nagamori S, Endou H (2003) Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem 278(44):43838–43845. https://doi.org/10.1074/jbc.M305221200

    Article  CAS  Google Scholar 

  69. Fukuhara D, Kanai Y, Chairoungdua A, Babu E, Bessho F, Kawano T, Akimoto Y, Endou H, Yan K (2007) Protein characterization of NA+-independent system L amino acid transporter 3 in mice: a potential role in supply of branched-chain amino acids under nutrient starvation. Am J Pathol 170(3):888–898. https://doi.org/10.2353/ajpath.2007.060428

    Article  CAS  Google Scholar 

  70. Yang Q, Guan KL (2007) Expanding mTOR signaling. Cell Res 17(8):666–681. https://doi.org/10.1038/cr.2007.64

    Article  CAS  Google Scholar 

  71. Wu W, Wang S, Liu Q, Shan T, Wang X, Feng J, Wang Y (2020) AMPK facilitates intestinal long-chain fatty acid uptake by manipulating CD36 expression and translocation. FASEB J 34(4):4852–4869. https://doi.org/10.1096/fj.201901994R

    Article  CAS  Google Scholar 

  72. Bechmann LP, Gieseler RK, Sowa JP, Kahraman A, Erhard J, Wedemeyer I, Emons B, Jochum C, Feldkamp T, Gerken G, Canbay A (2010) Apoptosis is associated with CD36/fatty acid translocase upregulation in non-alcoholic steatohepatitis. Liver Int 30(6):850–859. https://doi.org/10.1111/j.1478-3231.2010.02248.x

    Article  CAS  Google Scholar 

  73. Li X, Zhang T, Geng J, Wu Z, Xu L, Liu J, Tian J, Zhou Z, Nie J, Bai X (2019) Advanced oxidation protein products promote lipotoxicity and tubulointerstitial fibrosis via CD36/β-catenin pathway in diabetic nephropathy. Antioxid Redox Signal 31(7):521–538. https://doi.org/10.1089/ars.2018.7634

    Article  CAS  Google Scholar 

  74. Yu L, Chen Y, Tooze SA (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14(2):207–215. https://doi.org/10.1080/15548627.2017.1378838

    Article  CAS  Google Scholar 

  75. Bagherniya M, Butler AE, Barreto GE, Sahebkar A (2018) The effect of fasting or calorie restriction on autophagy induction: a review of the literature. Ageing Res Rev 47:183–197. https://doi.org/10.1016/j.arr.2018.08.004

    Article  Google Scholar 

  76. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176(1–2):11–42. https://doi.org/10.1016/j.cell.2018.09.048

    Article  CAS  Google Scholar 

  77. Xin W, Li Z, Xu Y, Yu Y, Zhou Q, Chen L, Wan Q (2016) Autophagy protects human podocytes from high glucose-induced injury by preventing insulin resistance. Metabolism 65(9):1307–1315. https://doi.org/10.1016/j.metabol.2016.05.015

    Article  CAS  Google Scholar 

  78. Xiao T, Guan X, Nie L, Wang S, Sun L, He T, Huang Y, Zhang J, Yang K, Wang J, Zhao J (2014) Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice. Mol Cell Biochem 394(1–2):145–154. https://doi.org/10.1007/s11010-014-2090-7

    Article  CAS  Google Scholar 

  79. Audzeyenka I, Rogacka D, Piwkowska A, Angielski S, Jankowski M (2017) Viability of primary cultured podocytes is associated with extracellular high glucose-dependent autophagy downregulation. Mol Cell Biochem 430(1–2):11–19. https://doi.org/10.1007/s11010-017-2949-5

    Article  CAS  Google Scholar 

  80. Sun J, Li ZP, Zhang RQ, Zhang HM (2017) Repression of miR-217 protects against high glucose-induced podocyte injury and insulin resistance by restoring PTEN-mediated autophagy pathway. Biochem Biophys Res Commun 483(1):318–324. https://doi.org/10.1016/j.bbrc.2016.12.145

    Article  CAS  Google Scholar 

  81. Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, Araki H, Araki S, Koya D, Asanuma K, Kim EH, Haneda M, Kajiwara N, Hayashi K, Ohashi H, Ugi S, Maegawa H, Uzu T (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65(3):755–767. https://doi.org/10.2337/db15-0473

    Article  CAS  Google Scholar 

  82. Kume S, Maegawa H (2020) Lipotoxicity, nutrient-sensing signals, and autophagy in diabetic nephropathy. JMA J 3(2):87–94. https://doi.org/10.31662/jmaj.2020-0005

    Article  Google Scholar 

  83. Guo H, Wang B, Li H, Ling L, Niu J, Gu Y (2018) Glucagon-like peptide-1 analog prevents obesity-related glomerulopathy by inhibiting excessive autophagy in podocytes. Am J Physiol Ren Physiol 314(2):F181-f189. https://doi.org/10.1152/ajprenal.00302.2017

    Article  CAS  Google Scholar 

  84. Wang X, Gao L, Lin H, Song J, Wang J, Yin Y, Zhao J, Xu X, Li Z, Li L (2018) Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli. Eur J Pharmacol 824:170–178. https://doi.org/10.1016/j.ejphar.2018.02.009

    Article  CAS  Google Scholar 

  85. Chen Y, Zhao X, Li J, Zhang L, Li R, Zhang H, Liao R, Liu S, Shi W, Liang X (2018) Amino acid starvation promotes podocyte autophagy through mammalian target of rapamycin inhibition and transcription factor EB activation. Mol Med Rep 18(5):4342–4348. https://doi.org/10.3892/mmr.2018.9438

    Article  CAS  Google Scholar 

  86. Yu L, Liu Y, Wu Y, Liu Q, Feng J, Gu X, Xiong Y, Fan Q, Ye J (2014) Smad3/Nox4-mediated mitochondrial dysfunction plays a crucial role in puromycin aminonucleoside-induced podocyte damage. Cell Signal 26(12):2979–2991. https://doi.org/10.1016/j.cellsig.2014.08.030

    Article  CAS  Google Scholar 

  87. Lennon R, Welsh GI, Singh A, Satchell SC, Coward RJ, Tavaré JM, Mathieson PW, Saleem MA (2009) Rosiglitazone enhances glucose uptake in glomerular podocytes using the glucose transporter GLUT1. Diabetologia 52(9):1944–1952. https://doi.org/10.1007/s00125-009-1423-7

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Research Fund from the Medical Sci-Tech Innovation Platform of Zhongnan Hospital, Wuhan University (no. PTXM2021035).

Author information

Authors and Affiliations

Authors

Contributions

DZ: conceptualization, resources, writing-original draft, visualization, supervision. XW: writing-reviewing and editing, project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoyan Wu.

Ethics declarations

Conflict of interest

All authors have no conflict of interest to disclose.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, D., Wu, X. Nutrient sensing, signaling transduction, and autophagy in podocyte injury: implications for kidney disease. J Nephrol 36, 17–29 (2023). https://doi.org/10.1007/s40620-022-01365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-022-01365-2

Keywords

Navigation