Skip to main content

Advertisement

Log in

Body composition, adipokines, FGF23-Klotho and bone in kidney transplantation: Is there a link?

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Kidney transplantation—associated mineral and bone disorder (KT-MBD) still represents a black box on the long-term due to scarce available data. We aimed to investigate the impact of non-classical bone regulating factors (body composition, adipokines, inflammatory markers, fibroblast growth factor 23—FGF23 and α-Klotho) in long-standing kidney transplant (KT) recipients compared to the general population.

Methods

Our cross-sectional study, enrolling 59 KT patients and age, sex and body mass index—matched healthy general population volunteers, assessed the predictive role of the body composition, serum adipokines (leptin, adiponectin, resistin), inflammatory markers (erythrocyte sedimentation rate, C-reactive protein) and parathyroid hormone (PTH)—FGF23/α-Klotho axis upon bone mineral density (BMD) and osteocalcin, using correlation and linear multiple regression.

Results

The 59 KT recipients (mean transplantation span of 57.7 ± 7.2 months) had similar body composition but significantly lower BMD (p < 0.01) compared to the general population group. Total lean mass was independently associated with BMD in both groups. In KT patients, age, time spent on dialysis and PTH were the main negative independent predictors of BMD, after adjusting for possible confounders. Resistin and α-Klotho also negatively predicted lumbar bone density (p < 0.001), while adiponectin and α-Klotho positively predicted osteocalcin levels (p < 0.001) in KT recipients, independently of inflammatory markers. No significant associations were found between FGF23 and bone parameters in any of the groups.

Conclusions

Age, PTH, time on dialysis and lean mass are among the main bone density predictors in long-standing KT patients. The bone impact of adipokine dysregulation and of α-Klotho merits further investigations in KT-MBD. Preserving lean mass for improved bone outcomes should be part of KT-MBD management on the long-term.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Delos Santos R, Rossi A, Coyne D, Maw TT (2019) Management of post-transplant hyperparathyroidism and bone disease. Drugs 79:501–513. https://doi.org/10.1007/s40265-019-01074-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Altman AM, Sprague SM (2018) Mineral and bone disease in kidney transplant recipients. Curr Osteoporos Rep 16:703–711. https://doi.org/10.1007/s11914-018-0490-4

    Article  PubMed  Google Scholar 

  3. Natacha R, Filipe R, Alice S, Pedro N (2019) The bone in renal transplant recipients-a nephrological and orthopedic review. Int J Transplant Res Med 5:045. https://doi.org/10.23937/2572-4045.1510045

    Article  Google Scholar 

  4. Fattahi MR, Niknam R, Shams M et al (2019) The association between prolonged proton pump inhibitors use and bone mineral density. Risk Manag Healthc Policy 12:349–355. https://doi.org/10.2147/RMHP.S223118

    Article  PubMed  PubMed Central  Google Scholar 

  5. Castiglioni S, Cazzaniga A, Albisetti W, Maier JAM (2013) Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients 5:3022–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giannini S, D’Angelo A, Carraro G et al (2001) Persistently increased bone turnover and low bone density in long-term survivors to kidney transplantation. Clin Nephrol 56:353–363

    CAS  PubMed  Google Scholar 

  7. dos Santos VR, Christofaro DGD, Gomes IC et al (2018) Relationship between obesity, sarcopenia, sarcopenic obesity, and bone mineral density in elderly subjects aged 80 years and over. Rev Bras Ortop English Ed 53:300–305. https://doi.org/10.1016/j.rboe.2017.09.002

    Article  Google Scholar 

  8. Johansen KL, Lee C (2015) Body composition in chronic kidney disease. Curr Opin Nephrol Hypertens 24:268–275. https://doi.org/10.1097/MNH.0000000000000120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schütz T, Hudjetz H, Roske AE et al (2012) Weight gain in long-term survivors of kidney or liver transplantation-Another paradigm of sarcopenic obesity? Nutrition 28:378–383. https://doi.org/10.1016/j.nut.2011.07.019

    Article  PubMed  Google Scholar 

  10. Bilha SC, Branisteanu D, Buzduga C et al (2018) Modifications in the spectrum of bone mass predictive factors with menopausal status. Endocr Res 43:176–185. https://doi.org/10.1080/07435800.2018.1448991

    Article  PubMed  Google Scholar 

  11. Mansell H, Rosaasen N, Dean J, Shoker A (2013) Evidence of enhanced systemic inflammation in stable kidney transplant recipients with low Framingham risk scores. Clin Transplant 27:E391–E399. https://doi.org/10.1111/ctr.12159

    Article  PubMed  Google Scholar 

  12. Kirk B, Feehan J, Lombardi G, Duque G (2020) Muscle and bone (a bonetto and m brotto, section editors) muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep 18:388–400

    Article  PubMed  Google Scholar 

  13. Kanaan N, Claes K, Devogelaer JP et al (2010) Fibroblast growth factor-23 and parathyroid hormone are associated with post-transplant bone mineral density loss. Clin J Am Soc Nephrol 5:1887–1892. https://doi.org/10.2215/CJN.00950110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ozdem S, Yilmaz VT, Ozdem SS et al (2015) Is Klotho F352V polymorphism the missing piece of the bone loss puzzle in renal transplant recipients? Pharmacology 95:271–278. https://doi.org/10.1159/000398812

    Article  CAS  PubMed  Google Scholar 

  15. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hansen D, Rasmussen K, Danielsen H et al (2011) No difference between alfacalcidol and paricalcitol in the treatment of secondary hyperparathyroidism in hemodialysis patients: a randomized crossover trial. Kidney Int 80:841–850. https://doi.org/10.1038/ki.2011.226

    Article  CAS  PubMed  Google Scholar 

  17. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S (2013) Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on Bone Densitometry. J Clin Densitom 16:455–466. https://doi.org/10.1016/j.jocd.2013.08.004

    Article  PubMed  Google Scholar 

  18. Chumlea WC, Cesari M, Evans WJ et al (2011) International working group on Sarcopenia. J Nutr Heal Aging 15:450–455. https://doi.org/10.1007/s12603-011-0092-7

    Article  Google Scholar 

  19. Yanishi M, Kinoshita H, Tsukaguchi H et al (2018) Factors related to osteosarcopenia in kidney transplant recipients. Transplant Proc 50:3371–3375. https://doi.org/10.1016/j.transproceed.2018.04.032

    Article  CAS  PubMed  Google Scholar 

  20. Ho-Pham LT, Nguyen UD, Nguyen TV (2014) Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab 99:30–38. https://doi.org/10.1210/jc.2013-319010.1210/jc.2014-v99i12-30A

    Article  CAS  PubMed  Google Scholar 

  21. Žofková I (2008) Hormonal aspects of the muscle-bone unit. Physiol Res 57(Suppl. 1):S159–S169

    Article  PubMed  Google Scholar 

  22. Zhu Q, Scherer PE (2018) Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol 14:105–120. https://doi.org/10.1038/nrneph.2017.157

    Article  CAS  PubMed  Google Scholar 

  23. Van Atteveld VA, Van Ancum JM, Reijnierse EM et al (2019) Erythrocyte sedimentation rate and albumin as markers of inflammation are associated with measures of sarcopenia: a cross-sectional study. BMC Geriatr 19:233. https://doi.org/10.1186/s12877-019-1253-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh M, Arora S, Kaur A et al (2018) Patterns of age- and sex-related variations in bone mineral density of lumbar spine and total femur: a retrospective diagnostic laboratory-based study. J Midlife Health 9:155–161. https://doi.org/10.4103/jmh.JMH_95_18

    Article  PubMed  PubMed Central  Google Scholar 

  25. Adami G, Saag KG (2019) Glucocorticoid-induced osteoporosis: 2019 concise clinical review. Osteoporos Int 30:1145–1156

    Article  CAS  PubMed  Google Scholar 

  26. Iyer SP, Nikkel LE, Nishiyama KK et al (2014) Kidney transplantation with early corticosteroid withdrawal: paradoxical effects at the central and peripheral skeleton. J Am Soc Nephrol 25:1331–1341. https://doi.org/10.1681/ASN.2013080851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Li X, Fan L et al (2019) Proton pump inhibitors therapy and risk of bone diseases: an update meta-analysis. Life Sci 218:213–223. https://doi.org/10.1016/j.lfs.2018.12.058

    Article  CAS  PubMed  Google Scholar 

  28. Carrillo-López N, Panizo S, Alonso-Montes C et al (2016) Direct inhibition of osteoblastic Wnt pathway by fibroblast growth factor 23 contributes to bone loss in chronic kidney disease. Kidney Int 90:77–89. https://doi.org/10.1016/j.kint.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  29. Erben RG, Andrukhova O (2017) FGF23-Klotho signaling axis in the kidney. Bone 100:62–68

    Article  CAS  PubMed  Google Scholar 

  30. Komaba H, Kaludjerovic J, Hu DZ et al (2017) Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int 92:599–611. https://doi.org/10.1016/j.kint.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  31. Haussler MR, Whitfield GK, Kaneko I et al (2012) The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord 13:57–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagaraju SP, Rhee CM, Mathe Z, Molnar MZ (2016) Adipocytokines in renal transplant recipients Kristof Nagy1. Clin Kidney J 9:359–373. https://doi.org/10.1093/ckj/sfv156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naot D, Musson DS, Cornish J (2017) The activity of adiponectin in bone. Calcif Tissue Int 100:486–499. https://doi.org/10.1007/s00223-016-0216-5

    Article  CAS  PubMed  Google Scholar 

  34. Bacchetta J, Boutroy S, Guebre-Egziabher F et al (2009) The relationship between adipokines, osteocalcin and bone quality in chronic kidney disease. Nephrol Dial Transplant 24:3120–3125. https://doi.org/10.1093/ndt/gfp262

    Article  CAS  PubMed  Google Scholar 

  35. Marchelek-Myśliwiec M, Dziedziejko V, Nowosiad-Magda M et al (2019) Bone metabolism parameters in hemodialysis patients with chronic kidney disease and in patients after kidney transplantation. Physiol Res 68:947–954. https://doi.org/10.33549/physiolres.934118

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Zhang X, Shao J et al (2017) Adiponectin regulates BMSC osteogenic differentiation and osteogenesis through the Wnt/β-catenin pathway. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-03899-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen XX, Yang T (2015) Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab 33:474–485. https://doi.org/10.1007/s00774-014-0569-7

    Article  CAS  PubMed  Google Scholar 

  38. Ghorban-Sabbagh M, Nazemian F, Naghibi M et al (2016) Correlation between serum leptin and bone mineral density in hemodialysis patients. J Ren Inj Prev 5:112–117. https://doi.org/10.15171/jrip.2016.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Malyszko J, Malyszko JS, Pawlak K, Mysliwiec M (2006) Resistin, a new adipokine, is related to inflammation and renal function in kidney allograft recipients. Transplant Proc 38:3434–3436. https://doi.org/10.1016/j.transproceed.2006.10.140

    Article  CAS  PubMed  Google Scholar 

  40. Oh KW, Lee WY, Rhee EJ et al (2005) The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin Endocrinol (Oxf) 63:131–138. https://doi.org/10.1111/j.1365-2265.2005.02312.x

    Article  CAS  Google Scholar 

  41. Mermerci Başkan B, Pekin Doğan Y, Sivas F et al (2010) The relation between osteoporosis and vitamin D levels and disease activity in ankylosing spondylitis. Rheumatol Int 30:375–381. https://doi.org/10.1007/s00296-009-0975-7

    Article  CAS  PubMed  Google Scholar 

  42. Siggelkow H, Cortis J, Claus C et al (2009) Erythrocyte sedimentation rate as an osteoporosis risk factor in patients with active Crohn’s disease. Osteologie 18:209–216. https://doi.org/10.1055/s-0037-1619894

    Article  Google Scholar 

  43. Wang T, He C (2019) TNF-α and IL-6: the link between immune and bone system. Curr Drug Targets 21:213–227. https://doi.org/10.2174/1389450120666190821161259

    Article  CAS  Google Scholar 

  44. Fargnoli JL, Sun Q, Olenczuk D et al (2010) Resistin is associated with biomarkers of inflammation while total and high-molecular weight adiponectin are associated with biomarkers of inflammation, insulin resistance, and endothelial function. Eur J Endocrinol 162:281–288. https://doi.org/10.1530/EJE-09-0555

    Article  CAS  PubMed  Google Scholar 

  45. Akaberi S, Simonsen O, Lindergård B, Nyberg G (2008) Can DXA predict fractures in renal transplant patients? Am J Transplant 8:2647–2651. https://doi.org/10.1111/j.1600-6143.2008.02423.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Valentin Zaharia and Mr. Adrian Aancute for excellent technical assistance.

Funding

This work was financed by the “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania under an internal Grant [27494/20.12.2018].

Author information

Authors and Affiliations

Authors

Contributions

AM and SCB contributed to the research design and performance, data analysis and writing of the paper. DC and MPT performed laboratory determinations and data analysis. PC performed laboratory determinations and revised the paper. AC and DDB performed the research design, drafted and revised the paper. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Adrian Covic.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The study adhered to the Declaration of Helsinki and the Declaration of Istanbul. The institutional ethics committee approved the protocol (20.03.2019).

Consent to participate

All individual participants gave written informed consent before entering the study.

Consent for publication

All individual participants gave written informed consent regarding publishing their data before entering the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matei, A., Bilha, S.C., Constantinescu, D. et al. Body composition, adipokines, FGF23-Klotho and bone in kidney transplantation: Is there a link?. J Nephrol 35, 293–304 (2022). https://doi.org/10.1007/s40620-021-00972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-021-00972-9

Keywords

Navigation