Skip to main content

Advertisement

Log in

Sugar- and artificially-sweetened beverages and the risks of chronic kidney disease: a systematic review and dose–response meta-analysis

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Consumption of sugar or artificially-sweetened beverages (SASBs) has been linked to albuminuria, decline in kidney function, and risk of chronic kidney disease (CKD). However, the results are controversial. We therefore aim to evaluate the effects of sugar or artificially-sweetened beverage consumption on CKD risk.

Methods

Original observational studies reporting relative risks (RRs) with 95% confidence intervals (CIs) for the association between sugar or artificially-sweetened beverage consumption and impaired renal function or CKD risk in adults were identified using a systematic search of PubMed and EMBASE from inception to 20 February, 2019. Random effects model was applied to derive summary RRs and 95% CIs. Linear and non-linear dose–response relationships were estimated using data from sugar or artificially-sweetened beverage consumption categories in each study.

Results

The summary RR of CKD for high versus low sugar-sweetened beverage consumption was 1.30 (95% CI 0.88–1.94) according to six included studies with a total of 25,455 participants, while the pooled RR of CKD for high versus low artificially sweetened beverage consumption was 1.40 (95% CI 0.65–3.02) according to three studies with a total of 19,995 participants. For dose–response analysis, a significant, increased risk of CKD was observed with the sugar or artificially-sweetened beverage consumption above seven servings per week (P < 0.001).

Conclusion

Our study found a positive association between consumption of sugar or artificially-sweetened beverage consumption and CKD, though it did not reach statistical significance. However, the dose–response results suggest that more than seven servings per week should be avoided.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Gross LS, Li L, Ford ES, Liu S (2004) Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr 79(5):774–779

    Article  PubMed  CAS  Google Scholar 

  2. Lutsey PL, Steffen LM, Stevens J (2008) Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation 117(6):754–761

    Article  PubMed  Google Scholar 

  3. Malik VS, Popkin BM, Bray GA, Despres JP, Willett WC, Hu FB (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33(11):2477–2483

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O et al (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514(7521):181–186

    Article  PubMed  CAS  Google Scholar 

  5. Chan TF, Lin WT, Huang HL, Lee CY, Wu PW, Chiu YW et al (2014) Consumption of sugar-sweetened beverages is associated with components of the metabolic syndrome in adolescents. Nutrients 6(5):2088–2103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bucher Della Torre S, Keller A, Laure Depeyre J, Kruseman M (2016) Sugar-sweetened beverages and obesity risk in children and adolescents: a systematic analysis on how methodological quality may influence conclusions. J Acad Nutr Diet. 116(4):638–659

    Article  PubMed  Google Scholar 

  7. Imamura F, O’Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN et al (2015) Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 21(351):h3576

    Article  Google Scholar 

  8. Hu D, Cheng L, Jiang W (2019) Sugar-sweetened beverages consumption and the risk of depression: A meta-analysis of observational studies. J Affect Disord 15(245):348–355

    Article  Google Scholar 

  9. Malik VS, Popkin BM, Bray GA, Despres JP, Hu FB (2010) Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121(11):1356–1364

    Article  PubMed  PubMed Central  Google Scholar 

  10. Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH et al (2009) Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 120(11):1011–1020

    Article  PubMed  CAS  Google Scholar 

  11. Popkin BM, Hawkes C (2016) Sweetening of the global diet, particularly beverages: patterns, trends, and policy responses. Lancet Diabetes Endocrinol 4(2):174–186

    Article  PubMed  Google Scholar 

  12. Karalius VP, Shoham DA (2013) Dietary sugar and artificial sweetener intake and chronic kidney disease: a review. Adv Chronic Kidney Dis 20(2):157–164

    Article  PubMed  Google Scholar 

  13. Shoham DA, Durazo-Arvizu R, Kramer H, Luke A, Vupputuri S, Kshirsagar A et al (2008) Sugary soda consumption and albuminuria: results from the National Health and Nutrition Examination Survey, 1999–2004. PLoS ONE 3(10):e3431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Saldana TM, Basso O, Darden R, Sandler DP (2007) Carbonated beverages and chronic kidney disease. Epidemiology (Cambridge, Mass) 18(4):501–506

    Article  Google Scholar 

  15. Lin J, Curhan GC (2011) Associations of sugar and artificially sweetened soda with albuminuria and kidney function decline in women. Clin J Am Soc Nephrol 6(1):160–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ferraro PM, Taylor EN, Gambaro G, Curhan GC (2013) Soda and other beverages and the risk of kidney stones. Clin J Am Soc Nephrol 8(8):1389–1395

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bomback AS, Derebail VK, Shoham DA, Anderson CA, Steffen LM, Rosamond WD et al (2010) Sugar-sweetened soda consumption, hyperuricemia, and kidney disease. Kidney Int 77(7):609–616

    Article  PubMed  CAS  Google Scholar 

  18. Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135(11):1301–1309

    Article  PubMed  CAS  Google Scholar 

  19. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175(1):66–73

    Article  PubMed  Google Scholar 

  20. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    PubMed  PubMed Central  Google Scholar 

  21. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J et al (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 22(343):d4002

    Article  Google Scholar 

  22. Yuzbashian E, Asghari G, Mirmiran P, Zadeh-Vakili A, Azizi F (2016) Sugar-sweetened beverage consumption and risk of incident chronic kidney disease: Tehran lipid and glucose study. Nephrology 21(7):608–616

    Article  PubMed  CAS  Google Scholar 

  23. Rebholz CM, Grams ME, Steffen LM, Crews DC, Anderson CA, Bazzano LA et al (2017) Diet soda consumption and risk of incident end stage renal disease. Clin J Am Soc Nephrol 12(1):79–86

    Article  PubMed  Google Scholar 

  24. Bomback AS, Katz R, He K, Shoham DA, Burke GL, Klemmer PJ (2009) Sugar-sweetened beverage consumption and the progression of chronic kidney disease in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 90(5):1172–1178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Malik VS, Pan A, Willett WC, Hu FB (2013) Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. Am J Clin Nutr 98(4):1084–1102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gonzalez-Palacios S, Navarrete-Muñoz E-M, García-de-la-Hera M, Torres-Collado L, Santa-Marina L, Amiano P et al (2019) Sugar-containing beverages consumption and obesity in children aged 4–5 years in Spain: the INMA study. Nutrients 11(8):1772

    Article  PubMed Central  CAS  Google Scholar 

  27. Nettleton JA, Lutsey PL, Wang Y, Lima JA, Michos ED, Jacobs DR (2009) Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 32(4):688–694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Liu S, Manson JE, Buring JE, Stampfer MJ, Willett WC, Ridker PM (2002) Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. Am J Clin Nutr 75(3):492–498

    Article  PubMed  CAS  Google Scholar 

  29. Atkinson FS, Foster-Powell K, Brand-Miller JC (2008) International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31(12):2281–2283

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kang D-H, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M et al (2002) A role for uric acid in the progression of renal disease. J Am Soc Nephrol 13(12):2888–2897

    Article  PubMed  CAS  Google Scholar 

  31. Zheng Z, Harman JL, Coresh J, Köttgen A, McAdams-DeMarco MA, Correa A et al (2018) The dietary fructose: vitamin C intake ratio is associated with hyperuricemia in African–American adults. J Nutr 148(3):419–426

    Article  PubMed  PubMed Central  Google Scholar 

  32. Asselman M, Verkoelen C (2008) Fructose intake as a risk factor for kidney stone disease. Kidney Int 73(2):139–140

    Article  PubMed  CAS  Google Scholar 

  33. Moser M, White K, Henry B, Oh S, Miller ER, Anderson CA et al (2015) Phosphorus content of popular beverages. Am J Kidney Dis 65(6):969–971

    Article  PubMed  CAS  Google Scholar 

  34. Banerjee T, Crews DC, Wesson DE, Tilea A, Saran R, Burrows NR et al (2014) Dietary acid load and chronic kidney disease among adults in the United States. BMC Nephrol 15(1):137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Banerjee T, Crews DC, Wesson DE, Tilea AM, Saran R, Ríos-Burrows N et al (2015) High dietary acid load predicts ESRD among adults with CKD. J Am Soc Nephrol 26(7):1693–1700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Scialla JJ, Wolf M (2014) Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol 10(5):268

    Article  PubMed  CAS  Google Scholar 

  37. Rebholz CM, Grams ME, Coresh J, Selvin E, Inker LA, Levey AS et al (2015) Serum fibroblast growth factor-23 is associated with incident kidney disease. J Am Soc Nephrol 26(1):192–200

    Article  PubMed  CAS  Google Scholar 

  38. Sabatino A, Regolisti G, Brusasco I, Cabassi A, Morabito S, Fiaccadori E (2014) Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant 30(6):924–933

    Article  PubMed  CAS  Google Scholar 

  39. Bello AK, Nwankwo E, El Nahas AM (2005) Prevention of chronic kidney disease: a global challenge. Kidney Int 68:S11–S17

    Article  Google Scholar 

  40. Yuzbashian E, Asghari G, Mirmiran P, Hosseini F-S, Azizi F (2015) Associations of dietary macronutrients with glomerular filtration rate and kidney dysfunction: Tehran lipid and glucose study. J Nephrol 28(2):173–180

    Article  PubMed  CAS  Google Scholar 

  41. Slattery ML (2008) Defining dietary consumption: is the sum greater than its parts? Oxford University Press, Oxford

    Google Scholar 

  42. Hu FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13(1):3–9

    Article  PubMed  CAS  Google Scholar 

  43. Arsenault BJ, Lamarche B, Després JP (2017) Targeting overconsumption of sugar-sweetened beverages vs. overall poor diet quality for cardiometabolic diseases risk prevention: place your bets! Nutrients 9(6):600

  44. Lin J, Fung TT, Hu FB, Curhan GC (2011) Association of dietary patterns with albuminuria and kidney function decline in older white women: a subgroup analysis from the Nurses’ Health Study. Am J Kidney Dis 57(2):245–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chang A Van Horn L, Jacobs DR, Liu K, Muntner P, Newsome B, Shoham DA, Durazo-Arvizu R, Bibbins-Domingo K, Reis J, Kramer H (2013) Lifestyle-related factors, obesity, and incident microalbuminuria: the cARDIA (Coronary Artery Risk Development in Young Adults) study. American J Kid Dis 62(2):267–275

  46. Rebholz CM, Crews DC, Grams ME, Steffen LM, Levey AS, Miller ER, Appel LJ, Coresh J (2016) DASH (Dietary Approaches to Stop Hypertension) Diet and Risk of Subsequent Kidney Disease. American J Kid Dise 68(6):853–861

  47. Rebholz CM, Anderson CAM, Grams ME, Bazzano LA, Crews DC, Chang AR, Coresh J, Appel LJ (2016) Relationship of the american heart association's impact goals (Life's Simple 7) with risk of cchronic kidney disease: results From the Atherosclerosis Risk in Communities (ARIC) cohort study. J American Heart Ass 5(4)

  48. Asghari G, Yuzbashian E, Mirmiran P, Azizi F (2017) The association between dietary approaches to stop hypertension and incidence of chronic kidney disease in adults: the Tehran Lipid and Glucose Study. Nephrol Dial Transp 32(suppl_2):ii224–ii230

  49. Rebholz CM, Young BA, Katz R, Tucker KL, Carithers TC, Norwood AF, Correa A (2019) Patterns of Beverages Consumed and Risk of Incident Kidney Disease. Clin J American Soc Nephrol 14(1):49–56

  50. Lew QJ, Jafar TH, Jin A, Yuan JM, Koh WP (2018) Consumption of coffee but not of other caffeine-containing beverages reduces the risk of end-stage renal disease in the singapore Chinese health study. J Nutr 148(8):1315–1322

Download references

Funding

This work was supported by Shuang Ho Hospital (Grant number: W106HCP-01-2), Taipei Medical University (Grant number: TMU107-HHC-07 and TMU108-AE1-B58), and the Ministry of Science and Technology (Grant number: MOST109-2314-B-038-142-MY2).

Author information

Authors and Affiliations

Authors

Contributions

M-YW and J-SC had full access to all data in this study and took responsibility for the integrity of the data and the accuracy of the related analysis. Concept and design: W-CL and M-YW. literature search and data analysis and interpretation: W-CL, S-HO, and M-YW. Statistical analysis: W-CL and M-YW. Drafting of the manuscript: W-CL and S-HO. Critical revision of the manuscript on important intellectual content: all authors. Administrative, technical, and material support: W-CL, M-SW. Supervision: M-YW and M-SW.

Corresponding author

Correspondence to Mei-Yi Wu.

Ethics declarations

Conflict of interest

The authors reported that they had no competing interests.

Ethical approval

No ethical issues are raised by systematic reviews.

Informed consent

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, WC., Ou, SH., Chou, CL. et al. Sugar- and artificially-sweetened beverages and the risks of chronic kidney disease: a systematic review and dose–response meta-analysis. J Nephrol 34, 1791–1804 (2021). https://doi.org/10.1007/s40620-020-00957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00957-0

Keywords

Navigation