Skip to main content

Advertisement

Log in

Paracetamol use and lowered risk of acute kidney injury in patients with rhabdomyolysis

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Mortality with rhabdomyolysis-associated acute kidney injury can be as high as 80%. Experimental data from mouse models of rhabdomyolysis showed that paracetamol reduces the expected increase in serum creatinine level. We aimed to assess the association between paracetamol use and the need for starting renal replacement therapy (RRT).

Methods

We conducted a propensity score-matched cohort study in Orléans Hospital, France (a 1136-bed, public, university-affiliated and teaching hospital). All patients with serum creatine phosphokinase (CK) level > 5000 IU/L between January 1st, 2008 and December 31st, 2017 were included. A propensity score was calculated for each included patient by using multivariable logistic regression and all available baseline characteristics. The main outcome was the incidence of RRT initiation from day 1 to day 28 in the propensity score-matched cohort between patients exposed and unexposed to paracetamol.

Results

Over the study period, 1065 patients with at least one CK level measurement > 5000 IU/L were included; 40 (3.8%) had at least one RRT session. Among the 343 matched pairs, 10 (2.9%) exposed and 24 (7.0%) unexposed patients underwent RRT before day 28 (P = 0.021). Primary time-to-event analysis showed that exposure to paracetamol was significantly associated with reduced absolute risk of RRT: absolute risk difference = − 3.18% (95% CI − 5.23 to − 1.20, P = 0.001). All secondary analyses showed a significantly reduced absolute risk of RRT in patients exposed to paracetamol.

Conclusion

Our study showed a significant association between paracetamol exposure and reduced incidence of RRT among patients with rhabdomyolysis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

not applicable.

References

  1. Huerta-Alardín AL, Varon J, Marik PE (2004) Bench-to-bedside review: Rhabdomyolysis–an overview for clinicians. Crit Care 9:158–169. https://doi.org/10.1186/cc2978

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zutt R, van der Kooi AJ, Linthorst GE et al (2014) Rhabdomyolysis: review of the literature. Neuromuscul Disord 24:651–659. https://doi.org/10.1016/j.nmd.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  3. Brown CVR, Rhee P, Chan L et al (2004) Preventing renal failure in patients with rhabdomyolysis: do bicarbonate and mannitol make a difference? J Trauma 56:1191–1196. https://doi.org/10.1097/01.TA.0000130761.78627.10

    Article  PubMed  Google Scholar 

  4. El-Abdellati E, Eyselbergs M, Sirimsi H et al (2013) An observational study on rhabdomyolysis in the intensive care unit. Exploring its risk factors and main complication: acute kidney injury. Ann Intensive Care 3:8. https://doi.org/10.1186/2110-5820-3-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Safari S, Yousefifard M, Hashemi B et al (2016) The value of serum creatine kinase in predicting the risk of rhabdomyolysis-induced acute kidney injury: a systematic review and meta-analysis. Clin Exp Nephrol 20:153–161. https://doi.org/10.1007/s10157-015-1204-1

    Article  CAS  PubMed  Google Scholar 

  6. McMahon GM, Zeng X, Waikar SS (2013) A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern Med 173:1821. https://doi.org/10.1001/jamainternmed.2013.9774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bagley WH, Yang H, Shah KH (2007) Rhabdomyolysis. Intern Emerg Med 2:210–218. https://doi.org/10.1007/s11739-007-0060-8

    Article  CAS  PubMed  Google Scholar 

  8. Bosch X, Poch E, Grau JM (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361:62–72. https://doi.org/10.1056/NEJMra0801327

    Article  CAS  PubMed  Google Scholar 

  9. Boutaud O, Moore KP, Reeder BJ et al (2010) Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc Natl Acad Sci 107:2699–2704. https://doi.org/10.1073/pnas.0910174107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Billings FT IV, Petracek MR, Roberts LJ II, Pretorius M (2015) Perioperative intravenous acetaminophen attenuates lipid peroxidation in adults undergoing cardiopulmonary bypass: a randomized clinical trial. PLoS ONE 10:e0117625. https://doi.org/10.1371/journal.pone.0117625

    Article  CAS  PubMed  Google Scholar 

  11. Janz DR, Bastarache JA, Peterson JF et al (2013) Association between cell-free hemoglobin, acetaminophen, and mortality in patients with sepsis: an observational study. Crit Care Med 41:784–790. https://doi.org/10.1097/CCM.0b013e3182741a54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Janz DR, Bastarache JA, Rice TW et al (2015) Randomized, placebo-controlled trial of acetaminophen for the reduction of oxidative injury in severe sepsis: the acetaminophen for the reduction of oxidative injury in severe sepsis trial. Crit Care Med 43:534–541. https://doi.org/10.1097/CCM.0000000000000718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120:c179-184. https://doi.org/10.1159/000339789

    Article  PubMed  Google Scholar 

  14. Lederer DJ, Bell SC, Branson RD et al (2019) Control of confounding and reporting of results in causal inference studies. guidance for authors from editors of respiratory, sleep, and critical care Journals. Ann Am Thorac Soc 16:22–28. https://doi.org/10.1513/AnnalsATS.201808-564PS

    Article  PubMed  Google Scholar 

  15. Riley RD, Snell KI, Ensor J et al (2019) Minimum sample size for developing a multivariable prediction model: part II binary and time-to-event outcomes. Stat Med 38:1276–1296. https://doi.org/10.1002/sim.7992

    Article  PubMed  Google Scholar 

  16. Rubin DB (1997) Estimating causal effects from large data sets using propensity scores. Ann Intern Med 127(8):757–763. https://doi.org/10.7326/0003-4819-127-8_part_2-199710151-00064

    Article  CAS  PubMed  Google Scholar 

  17. White IR, Royston P, Wood AM (2011) Multiple imputation using chained equations: Issues and guidance for practice. Stat Med 30:377–399. https://doi.org/10.1002/sim.4067

    Article  PubMed  Google Scholar 

  18. Austin PC (2011) Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat 10:150–161. https://doi.org/10.1002/pst.433

    Article  PubMed  Google Scholar 

  19. Scheike TH, Zhang M-J (2008) Flexible competing risks regression modeling and goodness-of-fit. Lifetime Data Anal 14:464–483. https://doi.org/10.1007/s10985-008-9094-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Scheike TH, Zhang M-J, Gerds TA (2008) Predicting cumulative incidence probability by direct binomial regression. Biometrika 95:205–220. https://doi.org/10.1093/biomet/asm096

    Article  Google Scholar 

  21. Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526. https://doi.org/10.1093/biomet/81.3.515

    Article  Google Scholar 

  22. Munoz-Price LS, Frencken JF, Tarima S, Bonten M (2016) Handling time-dependent variables: antibiotics and antibiotic resistance. Clin Infect Dis 62:1558–1563. https://doi.org/10.1093/cid/ciw191

    Article  PubMed  Google Scholar 

  23. Hong G (2012) Marginal mean weighting through stratification: a generalized method for evaluating multivalued and multiple treatments with nonexperimental data. Psychol Methods 17:44–60. https://doi.org/10.1037/a0024918

    Article  PubMed  Google Scholar 

  24. Nguyen T-L, Collins GS, Spence J et al (2017) Double-adjustment in propensity score matching analysis: choosing a threshold for considering residual imbalance. BMC Med Res Methodol 17:78. https://doi.org/10.1186/s12874-017-0338-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Austin PC (2009) Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med 28:3083–3107. https://doi.org/10.1002/sim.3697

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cervellin G, Comelli I, Benatti M et al (2017) Non-traumatic rhabdomyolysis: background, laboratory features, and acute clinical management. Clin Biochem 50:656–662. https://doi.org/10.1016/j.clinbiochem.2017.02.016

    Article  PubMed  Google Scholar 

  27. Simpson SA, Zaccagni H, Bichell DP et al (2014) Acetaminophen attenuates lipid peroxidation in children undergoing cardiopulmonary bypass. Pediatric Criti Care Med 15:503–510. https://doi.org/10.1097/PCC.0000000000000149

    Article  Google Scholar 

  28. On behalf of the French Intensive Care Renal Network (F.I.R.N), Candela N, Silva S et al (2020) Short- and long-term renal outcomes following severe rhabdomyolysis: a French multicenter retrospective study of 387 patients. Ann Intensive Care 10:27. https://doi.org/10.1186/s13613-020-0645-1

    Article  CAS  Google Scholar 

  29. Patanwala AE, Aljuhani O, Bakhsh H, Erstad BL (2018) Effect of Acetaminophen on the Prevention of Acute Kidney Injury in Patients With Sepsis. Ann Pharmacother 52(1):48–53. https://doi.org/10.1177/1060028017728298

    Article  CAS  PubMed  Google Scholar 

  30. Reeder BJ, Svistunenko DA, Cooper CE, Wilson MT (2004) The radical and redox chemistry of myoglobin and hemoglobin: from in vitro studies to human pathology. Antioxid Redox Signal 6:954–966. https://doi.org/10.1089/ars.2004.6.954

    Article  CAS  PubMed  Google Scholar 

  31. AlBasher G, Alfarraj S, Alarifi S et al (2020) Nephroprotective role of selenium nanoparticles against glycerol-induced acute kidney injury in rats. Biol Trace Elem Res 194:444–454. https://doi.org/10.1007/s12011-019-01793-5

    Article  CAS  PubMed  Google Scholar 

  32. Reis NG, Francescato HDC, de Almeida LF et al (2019) Protective effect of calcitriol on rhabdomyolysis-induced acute kidney injury in rats. Sci Rep 9:7090. https://doi.org/10.1038/s41598-019-43564-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guerrero-Hue M, García-Caballero C, Palomino-Antolín A et al (2019) Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J 33:8961–8975. https://doi.org/10.1096/fj.201900077R

    Article  CAS  PubMed  Google Scholar 

  34. Panizo N, Rubio-Navarro A, Amaro-Villalobos JM et al (2015) Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press Res 40:520–532. https://doi.org/10.1159/000368528

    Article  CAS  PubMed  Google Scholar 

  35. Guerrero-Hue M, Rubio-Navarro A, Sevillano Á et al (2018) Adverse effects of the renal accumulation of haem proteins. Novel Ther Approaches Nefrol (Engl Ed) 38:13–26. https://doi.org/10.1016/j.nefroe.2018.01.003

    Article  Google Scholar 

  36. Plewes K, Kingston HWF, Ghose A et al (2018) Acetaminophen as a renoprotective adjunctive treatment in patients with severe and moderately severe falciparum malaria: a randomized, controlled, open-label trial. Clin Infect Dis 67:991–999. https://doi.org/10.1093/cid/ciy213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cooper DJ, Plewes K, Grigg MJ et al (2018) The effect of regularly dosed paracetamol versus no paracetamol on renal function in Plasmodium knowlesi malaria (PACKNOW): study protocol for a randomised controlled trial. Trials 19:250. https://doi.org/10.1186/s13063-018-2600-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prescott LF (1980) Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol. https://doi.org/10.1111/j.1365-2125.1980.tb01812.x

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen C-Y, Lin Y-R, Zhao L-L et al (2013) Clinical factors in predicting acute renal failure caused by rhabdomyolysis in the ED. Am J Emerg Med 31:1062–1066. https://doi.org/10.1016/j.ajem.2013.03.047

    Article  PubMed  Google Scholar 

  40. Heyne N, Guthoff M, Krieger J, Haap M, Häring H-U (2012) High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin Pract 121:c159–c164. https://doi.org/10.1159/000343564

    Article  CAS  PubMed  Google Scholar 

  41. Petejova N, Martinek A (2014) Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review. Crit Care 18:224. https://doi.org/10.1186/cc13897

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zeng X, Zhang L, Wu T, Fu P (2014) Continuous renal replacement therapy (CRRT) for rhabdomyolysis (review). Cochrane Database Syst Rev 6:CD008566. https://doi.org/10.1002/14651858.CD008566.pub2

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MD: conceptualization; validation; formal analysis; writing–original draft; writing review and editing; ThB: conceptualization; methodology; validation; formal analysis; writing–original draft; writing review and editing; supervision.

Corresponding author

Correspondence to Thierry Boulain.

Ethics declarations

Conflict of interest

The authors declare that they have no financial or non-financial competing interests relative to this submission.

Ethical approval

The protocol was approved by the Ethics Committee of the French Society of Intensive Care (#CE SRLF 17-56).

Informed consent

Patients were informed of the study by regular mail, and their right to refuse participation and how to do so was clearly reminded.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 782 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desgrouas, M., Boulain, T. Paracetamol use and lowered risk of acute kidney injury in patients with rhabdomyolysis. J Nephrol 34, 1725–1735 (2021). https://doi.org/10.1007/s40620-020-00950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00950-7

Keywords

Navigation