Skip to main content

Advertisement

Log in

Coronary artery disease in dialysis patients: evidence synthesis, controversies and proposed management strategies

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality among patients with end-stage renal disease (ESRD). Clustering of traditional atherosclerotic and non-traditional risk factors drive the excess rates of coronary and non-coronary CVD in this population. The incidence, severity and mortality of coronary artery disease (CAD) as well as the number of complications of its therapy is higher in dialysis patients than in non-chronic kidney disease patients. Given the lack of randomized clinical trial evidence in this population, current practice is informed by observational data with a significant potential for bias. Furthermore, guidelines lack any recommendation for these patients or extrapolate them from trials performed in non-dialysis patients. Patients with ESRD are more likely to be asymptomatic, posing a challenge to the correct identification of CAD, which is essential for appropriate risk stratification and management. This may lead to “therapeutic nihilism”, which has been associated with worse outcomes. Here, the ERA-EDTA EUDIAL Working Group reviews the diagnostic work-up and therapy of chronic coronary syndromes, unstable angina/non-ST elevation and ST-elevation myocardial infarction in dialysis patients, outlining unclear issues and controversies, discussing recent evidence, and proposing management strategies. Indications of antiplatelet and anticoagulant therapies, percutaneous coronary intervention and coronary artery bypass grafting are discussed. The issue of the interaction between dialysis session and myocardial damage is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarnak MJ, Amann K, Bangalore S et al (2019) Chronic kidney disease and coronary artery disease. J Am Coll Cardiol 74(14):1823. https://doi.org/10.1016/j.jacc.2019.08.1017

    Article  CAS  PubMed  Google Scholar 

  2. Manjunath G, Tighiouart H, Ibrahim H et al (2003) Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J Am Coll Cardiol 41(1):47–55. https://doi.org/10.1016/s0735-1097(02)02663-3

    Article  PubMed  Google Scholar 

  3. Saran R, Robinson B, Abbott KC et al (2019) US renal data system 2018 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 73(3s1):A7–A8. https://doi.org/10.1053/j.ajkd.2019.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nakano T, Ninomiya T, Sumiyoshi S et al (2010) Association of kidney function with coronary atherosclerosis and calcification in autopsy samples from Japanese elders: the Hisayama study. Am J Kidney Dis 55(1):21–30. https://doi.org/10.1053/j.ajkd.2009.06.034

    Article  PubMed  Google Scholar 

  5. Herzog CA, Littrell K, Arko C, Frederick PD (2007) Blaney M Clinical characteristics of dialysis patients with acute myocardial infarction in the United States: a collaborative project of the United States Renal Data System and the National Registry of Myocardial Infarction. Circulation 116(13):1465–1472. https://doi.org/10.1161/circulationaha.107.696765

    Article  PubMed  Google Scholar 

  6. Charytan D, Kuntz RE (2006) The exclusion of patients with chronic kidney disease from clinical trials in coronary artery disease. Kidney Int 70(11):2021–2030. https://doi.org/10.1038/sj.ki.5001934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hammes MS (2004) Medical complications in hemodialysis patients requiring vascular access radiology procedures. Semin Intervent Radiol 21(2):105–110. https://doi.org/10.1055/s-2004-833683

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shroff GR, Herzog CA (2013) Acute myocardial infarction in patients with chronic kidney disease: how are the most vulnerable patients doing? Kidney Int 84(2):230–233. https://doi.org/10.1038/ki.2013.151

    Article  PubMed  Google Scholar 

  9. Ortiz A, Covic A, Fliser D et al (2014) Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 383(9931):1831–1843. https://doi.org/10.1016/s0140-6736(14)60384-6

    Article  PubMed  Google Scholar 

  10. Knuuti J, Wijns W, Saraste A et al (2019) ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz425

    Article  PubMed  Google Scholar 

  11. Saraste A, Barbato E, Capodanno D et al (2019) Imaging in ESC clinical guidelines: chronic coronary syndromes. Eur Heart J Cardiovasc Imaging 20(11):1187–1197. https://doi.org/10.1093/ehjci/jez219

    Article  PubMed  Google Scholar 

  12. Goldsmith DJ, Covic A (2001) Coronary artery disease in uremia: etiology, diagnosis, and therapy. Kidney Int 60(6):2059–2078. https://doi.org/10.1046/j.1523-1755.2001.00040.x

    Article  CAS  PubMed  Google Scholar 

  13. Bhatti NK, Karimi Galougahi K, Paz Y et al (2016) Diagnosis and management of cardiovascular disease in advanced and end-stage renal disease. J Am Heart Assoc. https://doi.org/10.1161/jaha.116.003648

    Article  PubMed  PubMed Central  Google Scholar 

  14. Herzog CA, Asinger RW, Berger AK et al (2011) Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: improving Global Outcomes (KDIGO). Kidney Int 80(6):572–586. https://doi.org/10.1038/ki.2011.223

    Article  PubMed  Google Scholar 

  15. Ramphul R, Fernandez M, Firoozi S, Kaski JC, Sharma R, Banerjee D (2018) Assessing cardiovascular risk in chronic kidney disease patients prior to kidney transplantation: clinical usefulness of a standardised cardiovascular assessment protocol. BMC Nephrol 19(1):2. https://doi.org/10.1186/s12882-017-0795-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Winther S, Svensson M, Jorgensen HS et al (2015) Diagnostic performance of coronary CT angiography and myocardial perfusion imaging in kidney transplantation candidates. JACC Cardiovasc Imaging 8(5):553–562. https://doi.org/10.1016/j.jcmg.2014.12.028

    Article  PubMed  Google Scholar 

  17. K/DOQI (2005) clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis 45(43):S1–S153

    Google Scholar 

  18. Lentine KL, Costa SP, Weir MR et al (2012) Cardiac disease evaluation and management among kidney and liver transplantation candidates: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J Am Coll Cardiol 60(5):434–480. https://doi.org/10.1016/j.jacc.2012.05.008

    Article  PubMed  Google Scholar 

  19. Rivera RF, Mircoli L, Bonforte G et al (2011) Dipyridamole stress echocardiography in diagnosis and prognosis of hemodialysis patients with asymptomatic coronary disease. Hemodial Int 15(4):468–476. https://doi.org/10.1111/j.1542-4758.2011.00572.x

    Article  PubMed  Google Scholar 

  20. Schmidt A, Stefenelli T, Schuster E (2001) Mayer G Informational contribution of noninvasive screening tests for coronary artery disease in patients on chronic renal replacement therapy. Am J Kidney Dis 37(1):56–63. https://doi.org/10.1053/ajkd.2001.20584

    Article  CAS  PubMed  Google Scholar 

  21. Bangalore S (2016) Stress testing in patients with chronic kidney disease: the need for ancillary markers for effective risk stratification and prognosis. J Nucl Cardiol 23(3):570–574. https://doi.org/10.1007/s12350-015-0264-7

    Article  PubMed  Google Scholar 

  22. Sharma R, Mehta RL, Brecker SJ et al (2009) The diagnostic and prognostic value of tissue Doppler imaging during dobutamine stress echocardiography in end-stage renal disease. Coron Artery Dis 20(3):230–237. https://doi.org/10.1097/MCA.0b013e32832ac5eb

    Article  PubMed  Google Scholar 

  23. Kramer A, Pippias M, Noordzij M et al (2019) The European Renal Association—European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report 2016: a summary. Clin Kidney J 12(5):702–720. https://doi.org/10.1093/ckj/sfz011

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kramer A, Pippias M, Noordzij M et al (2018) The European Renal Association—European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report 2015: a summary. Clin Kidney J 11(1):108–122. https://doi.org/10.1093/ckj/sfx149

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pippias M, Kramer A, Noordzij M et al (2017) The European Renal Association—European Dialysis and Transplant Association Registry Annual Report 2014: a summary. Clin Kidney J 10(2):154–169. https://doi.org/10.1093/ckj/sfw135

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kramer A, Pippias M, Stel VS et al (2016) Renal replacement therapy in Europe: a summary of the 2013 ERA-EDTA Registry Annual Report with a focus on diabetes mellitus. Clin Kidney J 9(3):457–469. https://doi.org/10.1093/ckj/sfv151

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jain N (2011) Hedayati SS How should clinicians interpret cardiac troponin values in patients with ESRD? Semin Dial 24(4):398–400. https://doi.org/10.1111/j.1525-139X.2011.00912.x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Skadberg Ø, Sandberg S, Røraas T et al (2016) The variation in high sensitive cardiac troponin concentration during haemodialysis treatment is not similar to the biological variation observed in stable end stage renal disease patients. Scand J Clin Lab Invest 76(8):645–652. https://doi.org/10.1080/00365513.2016.1230886

    Article  CAS  PubMed  Google Scholar 

  29. Michos ED, Wilson LM, Yeh HC et al (2014) Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome: a systematic review and meta-analysis. Ann Intern Med 161(7):491–501. https://doi.org/10.7326/m14-0743

    Article  PubMed  Google Scholar 

  30. Khan NA, Hemmelgarn BR, Tonelli M, Thompson CR, Levin A (2005) Prognostic value of troponin T and I among asymptomatic patients with end-stage renal disease: a meta-analysis. Circulation 112(20):3088–3096. https://doi.org/10.1161/circulationaha.105.560128

    Article  CAS  PubMed  Google Scholar 

  31. Boden WE, O'Rourke RA, Teo KK et al (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356(15):1503–1516. https://doi.org/10.1056/NEJMoa070829

    Article  CAS  PubMed  Google Scholar 

  32. Frye RL, August P, Brooks MM et al (2009) A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med 360(24):2503–2515. https://doi.org/10.1056/NEJMoa0805796

    Article  CAS  PubMed  Google Scholar 

  33. Holper EM, Addo T (2010) Clinical implications of the BARI 2D and COURAGE trials: the evolving role of percutaneous coronary intervention. Coron Artery Dis 21(7):397–401. https://doi.org/10.1097/MCA.0b013e32833d0134

    Article  PubMed  Google Scholar 

  34. Howard DH, Shen YC (2014) Trends in PCI volume after negative results from the COURAGE trial. Health Serv Res 49(1):153–170. https://doi.org/10.1111/1475-6773.12082

    Article  PubMed  Google Scholar 

  35. Neumann F-J, Sousa-Uva M, Ahlsson A et al (2018) 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 40(2):87–165. https://doi.org/10.1093/eurheartj/ehy394

    Article  Google Scholar 

  36. Windecker S, Kolh P, Alfonso F et al (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35(37):2541–2619. https://doi.org/10.1093/eurheartj/ehu278

    Article  PubMed  Google Scholar 

  37. Hochman JS, Reynolds HR, Bangalore S et al (2019) Baseline characteristics and risk profiles of participants in the ISCHEMIA randomized clinical trial. JAMA Cardiol 4(3):273–286. https://doi.org/10.1001/jamacardio.2019.0014

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maron DJ, Hochman JS, Reynolds HR et al (2020) Initial invasive or conservative strategy for stable coronary disease. N Engl J Med 382(15):1395–1407. https://doi.org/10.1056/NEJMoa1915922

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bangalore S, Maron DJ, Fleg JL et al (2018) International Study of Comparative Health Effectiveness with Medical and Invasive Approaches-Chronic Kidney Disease (ISCHEMIA-CKD): rationale and design. Am Heart J 205:42–52. https://doi.org/10.1016/j.ahj.2018.07.023

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bangalore S, Maron DJ, O’Brien SM et al (2020) Management of coronary disease in patients with advanced kidney disease. N Engl J Med. https://doi.org/10.1056/NEJMoa1915925

    Article  PubMed  PubMed Central  Google Scholar 

  41. Matsue Y, Suzuki M, Nagahori W, Ohno M, Matsumura A, Hashimoto Y (2013) β-blocker prevents sudden cardiac death in patients with hemodialysis. Int J Cardiol 165(3):519–522. https://doi.org/10.1016/j.ijcard.2011.09.037

    Article  PubMed  Google Scholar 

  42. Jin J, Guo X, Yu Q (2019) Effects of beta-blockers on cardiovascular events and mortality in dialysis patients: a systematic review and meta-analysis. Blood Purif 48(1):51–59. https://doi.org/10.1159/000496083

    Article  PubMed  Google Scholar 

  43. Assimon MM, Brookhart MA, Fine JP, Heiss G, Layton JB, Flythe JE (2018) A comparative study of carvedilol versus metoprolol initiation and 1-year mortality among individuals receiving maintenance hemodialysis. Am J Kidney Dis 72(3):337–348. https://doi.org/10.1053/j.ajkd.2018.02.350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tieu A, Velenosi TJ, Kucey AS, Weir MA, Urquhart BL (2018) β-Blocker dialyzability in maintenance hemodialysis patients: a randomized clinical trial. Clin J Am Soc Nephrol 13(4):604–611. https://doi.org/10.2215/cjn.07470717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inrig JK (2010) Intradialytic hypertension: a less-recognized cardiovascular complication of hemodialysis. Am J Kidney Dis 55(3):580–589. https://doi.org/10.1053/j.ajkd.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  46. Inrig JK (2010) Antihypertensive agents in hemodialysis patients: a current perspective. Semin Dial 23(3):290–297. https://doi.org/10.1111/j.1525-139X.2009.00697.x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bagai A, Lu D, Lucas J et al (2018) Temporal trends in utilization of cardiac therapies and outcomes for myocardial infarction by degree of chronic kidney disease: a report from the NCDR Chest Pain-MI Registry. J Am Heart Assoc 7(24):e010394. https://doi.org/10.1161/jaha.118.010394

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shroff GR, Li S, Herzog CA (2017) Trends in discharge claims for acute myocardial infarction among patients on dialysis. J Am Soc Nephrol 28(5):1379–1383. https://doi.org/10.1681/asn.2016050560

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shroff GR, Frederick PD, Herzog CA (2012) Renal failure and acute myocardial infarction: clinical characteristics in patients with advanced chronic kidney disease, on dialysis, and without chronic kidney disease. A collaborative project of the United States Renal Data System/National Institutes of Health and the National Registry of Myocardial Infarction. Am Heart J 163(3):399–406. https://doi.org/10.1016/j.ahj.2011.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang H, Liu J, Luo H et al (2017) Improving the diagnostic accuracy of acute myocardial infarction with the use of high-sensitive cardiac troponin T in different chronic kidney disease stages. Sci Rep 7:41350. https://doi.org/10.1038/srep41350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Szummer K, Lundman P, Jacobson SH et al (2009) Influence of renal function on the effects of early revascularization in non-ST-elevation myocardial infarction: data from the Swedish Web-System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART). Circulation 120(10):851–858. https://doi.org/10.1161/circulationaha.108.838169

    Article  CAS  PubMed  Google Scholar 

  52. Roffi M, Patrono C, Collet JP et al (2016) 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 37(3):267–315. https://doi.org/10.1093/eurheartj/ehv320

    Article  CAS  PubMed  Google Scholar 

  53. Shroff GR, Li S, Herzog CA (2015) Trends in mortality following acute myocardial infarction among dialysis patients in the United States over 15 years. J Am Heart Assoc 4(10):e002460. https://doi.org/10.1161/jaha.115.002460

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bhatia S, Arora S, Bhatia SM et al (2018) Non-ST-segment-elevation myocardial infarction among patients with chronic kidney disease: a propensity score-matched comparison of percutaneous coronary intervention versus conservative management. J Am Heart Assoc. https://doi.org/10.1161/jaha.117.007920

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bavry AA, Kumbhani DJ, Rassi AN, Bhatt DL, Askari AT (2006) Benefit of early invasive therapy in acute coronary syndromes: a meta-analysis of contemporary randomized clinical trials. J Am Coll Cardiol 48(7):1319–1325. https://doi.org/10.1016/j.jacc.2006.06.050

    Article  PubMed  Google Scholar 

  56. Fox KA, Clayton TC, Damman P et al (2010) Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data. J Am Coll Cardiol 55(22):2435–2445. https://doi.org/10.1016/j.jacc.2010.03.007

    Article  PubMed  Google Scholar 

  57. Shaw C, Nitsch D, Lee J, Fogarty D, Sharpe CC (2016) Impact of an early invasive strategy versus conservative strategy for unstable angina and non-ST elevation acute coronary syndrome in patients with chronic kidney disease: a systematic review. PLoS ONE 11(5):e0153478. https://doi.org/10.1371/journal.pone.0153478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gupta T, Kolte D, Khera S et al (2017) Management and outcomes of ST-segment elevation myocardial infarction in US renal transplant recipients. JAMA Cardiol 2(3):250–258. https://doi.org/10.1001/jamacardio.2016.5131

    Article  PubMed  Google Scholar 

  59. Szummer K, Lundman P, Jacobson SH et al (2010) Relation between renal function, presentation, use of therapies and in-hospital complications in acute coronary syndrome: data from the SWEDEHEART register. J Intern Med 268(1):40–49. https://doi.org/10.1111/j.1365-2796.2009.02204.x

    Article  CAS  PubMed  Google Scholar 

  60. Szummer K, Lindhagen L, Evans M et al (2019) Treatments and mortality trends in cases with and without dialysis who have an acute myocardial infarction: an 18-year nationwide experience. Circ Cardiovasc Qual Outcomes 12(9):e005879. https://doi.org/10.1161/circoutcomes.119.005879

    Article  PubMed  Google Scholar 

  61. Ismail MD, Jalalonmuhali M, Azhari Z et al (2018) Outcomes of STEMI patients with chronic kidney disease treated with percutaneous coronary intervention: the Malaysian National Cardiovascular Disease Database—Percutaneous Coronary Intervention (NCVD-PCI) registry data from 2007 to 2014. BMC Cardiovasc Disord 18(1):184. https://doi.org/10.1186/s12872-018-0919-9

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ibanez B, James S, Agewall S et al (2018) 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 39(2):119–177. https://doi.org/10.1093/eurheartj/ehx393

    Article  PubMed  Google Scholar 

  63. Burlacu A, Artene B, Covic A (2018) A narrative review on thrombolytics in advanced CKD: is it an evidence-based therapy? Cardiovasc Drugs Ther 32(5):463–475. https://doi.org/10.1007/s10557-018-6824-8

    Article  CAS  PubMed  Google Scholar 

  64. Newsome BB, Warnock DG, Kiefe CI et al (2005) Delay in time to receipt of thrombolytic medication among Medicare patients with kidney disease. Am J Kidney Dis 46(4):595–602. https://doi.org/10.1053/j.ajkd.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  65. Keeley EC, Boura JA, Grines CL (2003) Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361(9351):13–20. https://doi.org/10.1016/s0140-6736(03)12113-7

    Article  PubMed  Google Scholar 

  66. Gupta T, Harikrishnan P, Kolte D et al (2015) Trends in management and outcomes of ST-elevation myocardial infarction in patients with end-stage renal disease in the United States. Am J Cardiol 115(8):1033–1041. https://doi.org/10.1016/j.amjcard.2015.01.529

    Article  PubMed  Google Scholar 

  67. Binsell-Gerdin E, Graipe A, Ogren J, Jernberg T, Mooe T (2014) Hemorrhagic stroke the first 30 days after an acute myocardial infarction: incidence, time trends and predictors of risk. Int J Cardiol 176(1):133–138. https://doi.org/10.1016/j.ijcard.2014.07.032

    Article  PubMed  Google Scholar 

  68. Park SH, Kim W, Park CS, Kang WY, Hwang SH, Kim W (2009) A comparison of clopidogrel responsiveness in patients with versus without chronic renal failure. Am J Cardiol 104(9):1292–1295. https://doi.org/10.1016/j.amjcard.2009.06.049

    Article  CAS  PubMed  Google Scholar 

  69. Jeong KH, Cho JH, Woo JS et al (2015) Platelet reactivity after receiving clopidogrel compared with ticagrelor in patients with kidney failure treated with hemodialysis: a randomized crossover study. Am J Kidney Dis 65(6):916–924. https://doi.org/10.1053/j.ajkd.2014.11.023

    Article  CAS  PubMed  Google Scholar 

  70. Valgimigli M, Bueno H, Byrne RA et al (2018) 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 39(3):213–260. https://doi.org/10.1093/eurheartj/ehx419

    Article  PubMed  Google Scholar 

  71. Costa F, van Klaveren D, James S et al (2017) Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of individual-patient datasets from clinical trials. Lancet 389(10073):1025–1034. https://doi.org/10.1016/s0140-6736(17)30397-5

    Article  PubMed  Google Scholar 

  72. Carrero JJ, Varenhorst C, Jensevik K et al (2017) Long-term versus short-term dual antiplatelet therapy was similarly associated with a lower risk of death, stroke, or infarction in patients with acute coronary syndrome regardless of underlying kidney disease. Kidney Int 91(1):216–226. https://doi.org/10.1016/j.kint.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  73. Urban P, Meredith IT, Abizaid A et al (2015) Polymer-free drug-coated coronary stents in patients at high bleeding risk. N Engl J Med 373(21):2038–2047. https://doi.org/10.1056/NEJMoa1503943

    Article  CAS  PubMed  Google Scholar 

  74. Windecker S, Latib A, Kedhi E et al (2020) Polymer-based or polymer-free stents in patients at high bleeding risk. N Engl J Med 382(13):1208–1218. https://doi.org/10.1056/NEJMoa1910021

    Article  CAS  PubMed  Google Scholar 

  75. Chen YT, Chen HT, Hsu CY et al (2017) Dual antiplatelet therapy and clinical outcomes after coronary drug-eluting stent implantation in patients on hemodialysis. Clin J Am Soc Nephrol 12(2):262–271. https://doi.org/10.2215/cjn.04430416

    Article  PubMed  Google Scholar 

  76. Szczech LA, Best PJ, Crowley E et al (2002) Outcomes of patients with chronic renal insufficiency in the bypass angioplasty revascularization investigation. Circulation 105(19):2253–2258. https://doi.org/10.1161/01.cir.0000016051.33225.33

    Article  CAS  PubMed  Google Scholar 

  77. Best PJ, Lennon R, Ting HH et al (2002) The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol 39(7):1113–1119. https://doi.org/10.1016/s0735-1097(02)01745-x

    Article  PubMed  Google Scholar 

  78. Chang TI, Shilane D, Kazi DS, Montez-Rath ME, Hlatky MA, Winkelmayer WC (2012) Multivessel coronary artery bypass grafting versus percutaneous coronary intervention in ESRD. J Am Soc Nephrol 23(12):2042–2049. https://doi.org/10.1681/asn.2012060554

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang Y, Zhu S, Gao P, Zhang Q (2017) Comparison of coronary artery bypass grafting and drug-eluting stents in patients with chronic kidney disease and multivessel disease: a meta-analysis. Eur J Intern Med 43:28–35. https://doi.org/10.1016/j.ejim.2017.04.002

    Article  PubMed  Google Scholar 

  80. Krishnaswami A, Goh ACH, Go AS et al (2016) Effectiveness of percutaneous coronary intervention versus coronary artery bypass grafting in patients with end-stage renal disease. Am J Cardiol 117(10):1596–1603. https://doi.org/10.1016/j.amjcard.2016.02.035

    Article  PubMed  Google Scholar 

  81. Galiffa VA, Crimi G, Gritti V et al (2019) Drug-eluting compared to bare metal stents in patients with end-stage renal disease on dialysis: a meta-analysis. J Cardiovasc Med (Hagerstown) 20(5):313–320. https://doi.org/10.2459/jcm.0000000000000755

    Article  CAS  Google Scholar 

  82. Herzog CA, Ma JZ, Collins AJ (2004) Long-term outcome of renal transplant recipients in the United States after coronary revascularization procedures. Circulation 109(23):2866–2871

    Article  Google Scholar 

  83. McIntyre CW (2009) Effects of hemodialysis on cardiac function. Kidney Int 76(4):371–375

    Article  Google Scholar 

  84. Goldsmith DJ, Zoccali C, Bolignano D, Mallamaci F (2018) Oxford textbook of clinical nephrology. In: Left ventricular hypertrophy in chronic kidney disease. Oxford University Press, Oxford. doi:10.1093/med/9780199592548.003.0107_update_001

  85. McIntyre CW, Burton JO, Selby NM et al (2008) Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin J Am Soc Nephrol 3(1):19–26. https://doi.org/10.2215/cjn.03170707

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yildiz G, Kayatas M, Candan F, Yilmaz MB, Zorlu A, Sarikaya S (2013) What is the meaning of increased myocardial injury enzymes during hemodialysis? A tissue doppler imaging study. Cardiorenal Med 3(2):136–153. https://doi.org/10.1159/000353154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sarafidis PA, Kamperidis V, Loutradis C et al (2016) Haemodialysis acutely deteriorates left and right diastolic function and myocardial performance: an effect related to high ultrafiltration volumes? Nephrol Dial Transplant 32(8):1402–1409. https://doi.org/10.1093/ndt/gfw345

    Article  CAS  Google Scholar 

  88. Assa S, Hummel YM, Voors AA et al (2013) Changes in left ventricular diastolic function during hemodialysis sessions. Am J Kidney Dis 62(3):549–556. https://doi.org/10.1053/j.ajkd.2013.02.356

    Article  PubMed  Google Scholar 

  89. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66(6):1146–1149. https://doi.org/10.1161/01.cir.66.6.1146

    Article  CAS  PubMed  Google Scholar 

  90. Selby NM, McIntyre CW (2013) The vicious cycle of dialysis-induced cardiac injury: are dynamic changes in diastolic function involved? Am J Kidney Dis 62(3):442–444. https://doi.org/10.1053/j.ajkd.2013.06.003

    Article  PubMed  Google Scholar 

  91. Mallamaci F, Benedetto FA, Tripepi R et al (2010) Detection of pulmonary congestion by chest ultrasound in dialysis patients. JACC Cardiovasc Imaging 3(6):586–594. https://doi.org/10.1016/j.jcmg.2010.02.005

    Article  PubMed  Google Scholar 

  92. Machek P, Jirka T, Moissl U, Chamney P, Wabel P (2010) Guided optimization of fluid status in haemodialysis patients. Nephrol Dial Transplant 25(2):538–544. https://doi.org/10.1093/ndt/gfp487

    Article  PubMed  Google Scholar 

  93. Stefansson BV, Brunelli SM, Cabrera C et al (2014) Intradialytic hypotension and risk of cardiovascular disease. Clin J Am Soc Nephrol 9(12):2124–2132. https://doi.org/10.2215/cjn.02680314

    Article  PubMed  PubMed Central  Google Scholar 

  94. Burton JO, Jefferies HJ, Selby NM, McIntyre CW (2009) Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clin J Am Soc Nephrol 4(5):914–920. https://doi.org/10.2215/cjn.03900808

    Article  PubMed  PubMed Central  Google Scholar 

  95. Owen PJ, Priestman WS, Sigrist MK et al (2009) Myocardial contractile function and intradialytic hypotension. Hemodial Int Int Symp Home Hemodial 13(3):293–300. https://doi.org/10.1111/j.1542-4758.2009.00365.x

    Article  Google Scholar 

  96. Canty JM Jr, Fallavollita JA (2000) Chronic hibernation and chronic stunning: a continuum. J Nucl Cardiol 7(5):509–527. https://doi.org/10.1067/mnc.2000.109683

    Article  PubMed  Google Scholar 

Download references

Funding

Alexandru Burlacu was supported by the Romanian Academy of Medical Sciences and European Regional Development Fund, MySMIS 107124: Funding Contract 2/Axa 1/31.07.2017/ 107124 SMIS; Adrian Covic was supported by a grant of Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCE-2016-0908, contract number 167/2017, within PNCDI III; Alberto Ortiz was supported by PI16/02057, PI19/00588, PI19/00815, DTS18/00032, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071, ISCIII-RETIC REDinREN RD016/0009 FEDER funds, Fundacion Renal Iñigo Álvarez de Toledo (FRIAT), Comunidad de Madrid CIFRA2 B2017/BMD-3686.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Carlo Basile.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

(1) Statement of human rights. (2) Statement on the welfare of animals. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlacu, A., Genovesi, S., Basile, C. et al. Coronary artery disease in dialysis patients: evidence synthesis, controversies and proposed management strategies. J Nephrol 34, 39–51 (2021). https://doi.org/10.1007/s40620-020-00758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00758-5

Keywords

Navigation