Skip to main content

Advertisement

Log in

Sodium toxicity in peritoneal dialysis: mechanisms and “solutions”

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

The major trials in peritoneal dialysis (PD) have demonstrated that increasing peritoneal clearance of small solutes is not associated with any advantage on survival, whereas sodium and fluid overload heralds higher risk of death and technique failure. On the other hand, higher sodium and fluid overload due to loss of residual kidney function (RKF) and higher transport membrane is associated with poor patient and technique survival. Recent experimental studies also show that, independently from fluid overload, sodium accumulation in the peritoneal interstitium exerts direct inflammatory and angiogenetic stimuli, with consequent structural and functional changes of peritoneum, while in patients with Chronic Kidney Disease sodium stored in interstitial skin acts as independent determinant of left ventricular hypertrophy. Noteworthy, this tissue pool of sodium is modifiable being removed by dialysis. Therefore, novel PD strategies to optimize sodium removal, including the use of bimodal and/or low-sodium solutions, are actively tested. Nonetheless, a holistic approach aimed at preserving peritoneal function and the kidney may represent the key of therapy success in the hard task of preserving adequate sodium balance in PD patients. In this review, we describe the available evidence on sodium toxicity in PD, either related or unrelated to fluid overload, and we also discuss about possible “solutions” to preserve or restore sodium balance in PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization (2012) Guideline: sodium intake for adults and children. World Health Organization, Geneva, pp 1–46

    Google Scholar 

  2. He FJ, Li J, Macgregor GA (2013) Effect of longer term modest salt reduction on blood pressure: cochrane systematic review and meta-analysis of randomized trials. BMJ 346:f1325

    PubMed  Google Scholar 

  3. He FJ, MacGregor GA (2011) Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. Lancet 378(9789):380–382

    PubMed  Google Scholar 

  4. Koomans HA, Roos JC, Dorhout Mees EJ, Delawi IM (1985) Sodium balance in renal failure. A comparison of patients with normal subjects under extremes of sodium intake. Hypertension 7(5):714–721

    CAS  PubMed  Google Scholar 

  5. Cianciaruso B, Bellizzi V, Minutolo R et al (1996) Renal adaptation to dietary sodium restriction in moderate renal failure resulting from chronic glomerular disease. J Am Soc Nephrol 7(2):306–313

    CAS  PubMed  Google Scholar 

  6. De Nicola L, Minutolo R, Bellizzi V, investigators of the TArget Blood Pressure LEvels in Chronic Kidney Disease (TABLE in CKD) Study Group et al (2004) Achievement of target blood pressure levels in chronic kidney disease: a salty question? Am J Kidney Dis 43(5):782–795

    PubMed  Google Scholar 

  7. Uzu T, Ishikawa K, Fujii T, Nakamura S, Inenaga T, Kimura G (1997) Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation 96(6):1859–1862

    CAS  PubMed  Google Scholar 

  8. Fukuda M, Munemura M, Usami T et al (2004) Nocturnal blood pressure is elevated with natriuresis and proteinuria as renal function deteriorates in nephropathy. Kidney Int 65(2):621–625

    PubMed  Google Scholar 

  9. Borrelli S, De Nicola L, Stanzione G, Conte G, Minutolo R (2013) Resistant hypertension in non-dialysis chronic kidney disease. Int J Hypertens 2013:929183

    PubMed  PubMed Central  Google Scholar 

  10. De Nicola L, Gabbai FB, Agarwal R et al (2013) Prevalence and prognostic role of resistant hypertension in chronic kidney disease patients. J Am Coll Cardiol 61(24):2461–2467

    PubMed  Google Scholar 

  11. Minutolo R, Agarwal R, Borrelli S et al (2011) Prognostic role of ambulatory blood pressure measurement in patients with nondialysis chronic kidney disease. Arch Intern Med 171(12):1090–1098

    PubMed  Google Scholar 

  12. He J, Mills KT, Appel LJ, Chronic Renal Insufficiency Cohort Study Investigators et al (2016) Urinary sodium and potassium excretion and CKD progression. J Am Soc Nephrol. 27(4):1202–1212

    CAS  PubMed  Google Scholar 

  13. Mills KT, Chen J, Yang W, Chronic Renal Insufficiency Cohort (CRIC) Study Investigators et al (2016) Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease. JAMA. 315(20):2200–2210

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Garofalo C, Borrelli S, Provenzano M et al (2018) Dietary salt restriction in chronic kidney disease: a meta-analysis of randomized clinical trials. Nutrients 10(6):E732

    PubMed  Google Scholar 

  15. Van Biesen W, Williams JD, Covic AC, for the EuroBCM Study Group et al (2011) Fluid status in peritoneal dialysis patients: the European Body Composition Monitoring (EuroBCM) study cohort. PLoS One 6:e17148

    PubMed  PubMed Central  Google Scholar 

  16. Van Biesen W, Verger C, Heaf J, IPOD-PD Study Group et al (2019) Evolution over time of volume status and PD-related practice patterns in an incident peritoneal dialysis cohort. Clin J Am Soc Nephrol 14(6):882–893

    PubMed  PubMed Central  Google Scholar 

  17. Ronco C, Verger C, Crepaldi C, IPOD-PD Study Group et al (2015) Baseline hydration status in incident peritoneal dialysis patients: the initiative of patient outcomes in dialysis (IPOD-PD study). Nephrol Dial Transpl 30(5):849–858

    CAS  Google Scholar 

  18. Vongsanim S, Davenport A (2019) Factors associated with systolic hypertension in peritoneal dialysis patients. J Nephrol. https://doi.org/10.1007/s40620-019-00633-y

    Article  PubMed  PubMed Central  Google Scholar 

  19. Koc M, Toprak A, Tezcan H, Bihorac A, Akoglu E, Ozener IC (2002) Uncontrolled hypertension due to volume overload contributes to higher left ventricular mass index in CAPD patients. Nephrol Dial Transpl 17(9):1661–1666

    Google Scholar 

  20. Vaios V, Georgianos PI, Liakopoulos V, Agarwal R (2018) Assessment and management of hypertension among patients on peritoneal dialysis. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.07480618

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guyton AC (1992) Kidneys and fluids in pressure regulation. Small volume but large pressure changes. Hypertension 19(1 Suppl):I2–I8

    CAS  PubMed  Google Scholar 

  22. Heer M, Baisch F, Kropp J, Gerzer R, Drummer C (2000) High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol 278(4):F585–F595

    CAS  PubMed  Google Scholar 

  23. Rakova N, Jüttner K, Dahlmann A et al (2013) Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab 17(1):125–131

    CAS  PubMed  Google Scholar 

  24. Machnik A, Neuhofer W, Jantsch J et al (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15(5):545–552

    CAS  PubMed  Google Scholar 

  25. Machnik A, Dahlmann A, Kopp C et al (2010) Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension 55(3):755–761

    CAS  PubMed  Google Scholar 

  26. Wiig H, Schröder A, Neuhofer W et al (2013) Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 123(7):2803–2815

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun T, Sakata F, Ishii T et al (2019) Excessive salt intake increases peritoneal solute transport rate via local tonicity-responsive enhancer binding protein in subtotal nephrectomized mice. Nephrol Dial Transpl

  28. Sakata F, Ito Y, Mizuno M et al (2017) Sodium chloride promotes tissue inflammation via osmotic stimuli in subtotal-nephrectomized mice. Lab Invest 97(4):432–446

    CAS  PubMed  Google Scholar 

  29. Pletinck A, Consoli C, Van Landschoot M, Steppan S, Topley N, Passlick-Deetjen J, Vanholder R, Van Biesen W (2010) Salt intake induces epithelial-to-mesenchymal transition of the peritoneal membrane in rats. Nephrol Dial Transpl 25(5):1688–1696

    CAS  Google Scholar 

  30. Sawai A, Ito Y, Mizuno M et al (2011) Peritoneal macrophage infiltration is correlated with baseline peritoneal solute transport rate in peritoneal dialysis patients. Nephrol Dial Transpl 26(7):2322–2332

    Google Scholar 

  31. Kopp C, Linz P, Wachsmuth L et al (2012) (23)Na magnetic resonance imaging of tissue sodium. Hypertension 59(1):167–172

    CAS  PubMed  Google Scholar 

  32. Kopp C, Linz P, Dahlmann A et al (2013) 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 61(3):635–640

    CAS  PubMed  Google Scholar 

  33. Schneider MP, Raff U, Kopp C et al (2017) Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol 28(6):1867–1876

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dahlmann A, Dörfelt K, Eicher F et al (2015) Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int 87(2):434–441

    CAS  PubMed  Google Scholar 

  35. Ates K, Nergizoglu G, Keven K et al (2001) Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int 60:767–776

    CAS  PubMed  Google Scholar 

  36. Dong J, Li Y, Yang Z, Luo J, Zuo L (2011) Time-dependent associations between total sodium removal and mortality in patients on peritoneal dialysis. Perit Dial Int 31(4):412–421

    PubMed  Google Scholar 

  37. Lo WK, Ho YW, Li CS et al (2003) Effect of Kt/V on survival and clinical outcome in CAPD patients in a randomized prospective study. Kidney Int 64:649–656

    PubMed  Google Scholar 

  38. Paniagua R, Amato D, Vonesh E, for the Mexican Nephrology Collaborative Study Group et al (2002) Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 13:1307–1320

    CAS  PubMed  Google Scholar 

  39. Paniagua R, Amato D, Mujais S et al (2008) Predictive value of brain natriuretic peptides in patients on peritoneal dialysis: results from the ADEMEX trial. Clin J Am Soc Nephrol 3(2):407–415

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brimble KS, Walker M, Margetts PJ, Kundhal KK, Rabbat CG (2006) Meta-analysis:peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol 17(9):2591–2598

    PubMed  Google Scholar 

  41. Mehrotra R, Ravel V, Streja E et al (2015) Peritoneal equilibration test and patient outcomes. Clin J Am Soc Nephrol 10(11):1990–2001

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Qi H, Xu C, Yan H, Ma J (2011) Comparison of icodextrin and glucose solutions for long dwell exchange in peritoneal dialysis: a meta-analysis of randomized controlled trials. Perit Dial Int 31(2):179–188

    CAS  PubMed  Google Scholar 

  43. Brown EA, Davies SJ, Rutherford P, for the EAPOS Group et al (2003) Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J Am Soc Nephrol. 14:2948–2957

    PubMed  Google Scholar 

  44. Borrelli S, La Milia V, De Nicola L, Study group Peritoneal Dialysis of Italian Society of Nephrology et al (2019) Sodium removal by peritoneal dialysis: a systematic review and meta-analysis. J Nephrol 32(2):231–239

    PubMed  Google Scholar 

  45. Diaz-Buxo JA, Lowrie EG, Lew NL, Zhang SM, Zhu X, Lazarus JM (1999) Associates of mortality among peritoneal dialysis patients with special reference to peritoneal transport rates and solute clearance. Am J Kidney Dis 33(3):523–534

    CAS  PubMed  Google Scholar 

  46. Rocco M, Soucie JM, Pastan S, McClellan WM (2000) Peritoneal dialysis adequacy and risk of death. Kidney Int 58(1):446–457

    CAS  PubMed  Google Scholar 

  47. Bargman JM, Thorpe KE, Churchill DN, CANUSA Peritoneal Dialysis Study Group (2001) Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 12(10):2158–2162

    CAS  PubMed  Google Scholar 

  48. Termorshuizen F, Korevaar JC, Dekker FW, van Manen JG, Boeschoten EW, NECOSAD Study Group (2003) Krediet RT The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD-2). Am J Kidney Dis 41(6):1293–1302

    PubMed  Google Scholar 

  49. Wang AY, Woo J, Wang M, Sea MM, Sanderson JE, Lui SF, Li PK (2005) Important differentiation of factors that predict outcome in peritoneal dialysis patients with different degrees of residual renal function. Nephrol Dial Transpl 20(2):396–403

    Google Scholar 

  50. Liao CT, Chen YM, Shiao CC et al (2009) Rate of decline of residual renal function is associated with all-cause mortality and technique failure in patients on long-term peritoneal dialysis. Nephrol Dial Transpl 24(9):2909–2914

    Google Scholar 

  51. van der Wal WM, Noordzij M, Dekker FW, Netherlands Cooperative Study on the Adequacy of Dialysis Study Group (NECOSAD) et al (2011) Full loss of residual renal function causes higher mortality in dialysis patients; findings from a marginal structural model. Nephrol Dial Transpl 26(9):2978–2983

    Google Scholar 

  52. Pérez Fontán M, Remón Rodríguez C, da Cunha Naveira M et al (2016) Baseline residual kidney function and its ensuing rate of decline interact to predict mortality of peritoneal dialysis patients. PLoS One 11(7):e0158696

    PubMed  PubMed Central  Google Scholar 

  53. Obi Y, Rhee CM, Mathew AT et al (2016) Residual kidney function decline and mortality in incident hemodialysis patients. J Am Soc Nephrol 27(12):3758–3768

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang M, Obi Y, Streja E et al (2018) Impact of residual kidney function on hemodialysis adequacy and patient survival. Nephrol Dial Transpl 33(10):1823–1831

    CAS  Google Scholar 

  55. Moist LM, Port FK, Orzol SM et al (2000) Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol 11(3):556–564

    CAS  PubMed  Google Scholar 

  56. Jansen MA, Hart AA, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT, NECOSAD Study Group (2002) Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int 62(3):1046–1053

    PubMed  Google Scholar 

  57. Marants R, Qirjazi E, Grant CJ, Lee TY, McIntyre CW (2019) Renal perfusion during hemodialysis: intradialytic blood flow decline and effects of dialysate cooling. J Am Soc Nephrol 30(6):1086–1095

    PubMed  PubMed Central  Google Scholar 

  58. Weinhandl ED, Foley RN, Gilbertson DT, Arneson TJ, Snyder JJ, Collins AJ (2010) Propensity-matched mortality comparison of incident hemodialysis and peritoneal dialysis patients. J Am Soc Nephrol 21(3):499–506

    PubMed  PubMed Central  Google Scholar 

  59. Lukowski LR, Mehrotra R, Kheifets L, Arah OA, Nissenson AR, Kalantar-Zadeh K (2013) Comparing mortality of peritoneal and hemodialysis patients in the first 2 years of dialysis therapy: a marginal structural model analysis. Clin J Am Soc Nephrol 8(4):619–628

    Google Scholar 

  60. Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R (2016) Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int 90(3):515–524

    PubMed  Google Scholar 

  61. Wilck N, Balogh A, Markó L, Bartolomaeus H, Müller DN (2019) The role of sodium in modulating immune cell function. Nat Rev Nephrol 15(9):546–558

    CAS  PubMed  Google Scholar 

  62. Dong J, Li Y, Yang Z, Luo J (2010) Low dietary sodium intake increases the death risk in peritoneal dialysis. Clin J Am Soc Nephrol 5(2):240–247

    CAS  PubMed  PubMed Central  Google Scholar 

  63. La Milia V (2010) Peritoneal transport testing. J Nephrol 23(6):633–647

    PubMed  Google Scholar 

  64. La Milia V, Longhi S, Sironi E, Pontoriero G (2018) The peritoneal sieving of sodium: a simple and powerful test to rule out the onset of encapsulating peritoneal sclerosis in patients undergoing peritoneal dialysis. J Nephrol 31(1):137–145

    PubMed  Google Scholar 

  65. Fischbach M, Schmitt CP, Shroff R, Zaloszyc A, Warady BA (2016) Increasing sodium removal on peritoneal dialysis: applying dialysis mechanics to the peritoneal dialysis prescription. Kidney Int 89(4):761–766

    CAS  PubMed  Google Scholar 

  66. Konings CJ, Kooman JP, Schonck M et al (2003) Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int 63(4):1556–1563

    CAS  PubMed  Google Scholar 

  67. Ballout A, Garcia-Lopez E, Struyven J, Maréchal C, Goffin E (2011) Double-dose icodextrin to increase ultrafiltration in PD patients with inadequate ultrafiltration. Perit Dial Int 31(1):91–94

    PubMed  Google Scholar 

  68. Freida P, Wilkie M, Jenkins S, Dallas F, Issad B (2008) The contribution of combined crystalloid and colloid osmosis to fluid and sodium management in peritoneal dialysis. Kidney Int Suppl 108:S102–S111

    CAS  Google Scholar 

  69. Fischbach M, Issad B, Dubois V, Taamma R (2011) The beneficial influence on the effectiveness of automated peritoneal dialysis of varying the dwell time (short/long) and fill volume (small/large): a randomized controlled trial. Perit Dial Int 31(4):450–458

    PubMed  Google Scholar 

  70. Öberg CM, Rippe B (2017) Is Adapted APD Theoretically More Efficient than Conventional APD? Perit Dial Int 37(2):212–217

    PubMed  Google Scholar 

  71. Leypoldt JK, Charney DI, Cheung AK, Naprestek CL, Akin BH, Shockley TR (1995) Ultrafiltration and solute kinetics using low sodium peritoneal dialysate. Kidney Int 48(6):1959–1966

    CAS  PubMed  Google Scholar 

  72. Nakayama M, Kasai K, Imai H, TRM-280 Study Group (2009) Novel low Na peritoneal dialysis solutions designed to optimize Na gap of effluent: kinetics of Na and water removal. Perit Dial Int 29(5):528–535

    CAS  PubMed  Google Scholar 

  73. Davies S, Carlsson O, Simonsen O et al (2009) The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrol Dial Transpl 24(5):1609–1617

    CAS  Google Scholar 

  74. Rutkowski B, Tam P, van der Sande FM, Low Sodium Balance Study Group et al (2016) Low-sodium versus standard-sodium peritoneal dialysis solution in hypertensive patients: a randomized controlled trial. Am J Kidney Dis 67(5):753–761

    CAS  PubMed  Google Scholar 

  75. Rutkowski B, Tam P, van der Sande FM, Low Sodium balance Study Group et al (2019) Residual renal function and effect of low-sodium solution on blood pressure in peritoneal dialysis patients. Perit Dial Int. 39(4):335–343

    PubMed  Google Scholar 

  76. Davies SJ (2004) Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int 66(6):2437–2445

    CAS  PubMed  Google Scholar 

  77. Htay H, Johnson DW, Wiggins KJ et al (2018) Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev 10:CD007554

    PubMed  Google Scholar 

  78. Johnson DW, Brown FG, Clarke M et al (2012) Biocompatible versus standard peritoneal dialysis fluid—the balANZ trial. J Am Soc Nephrol 23:1097–1107

    PubMed  PubMed Central  Google Scholar 

  79. Bonomini M, Pandolfi A, Di Liberato L et al (2011) l-carnitine is an osmotic agent suitable for peritoneal dialysis. Kidney Int 80(6):645–654

    CAS  PubMed  Google Scholar 

  80. Bonomini M, Di Liberato L, Del Rosso G et al (2013) Effect of an l-carnitine-containing peritoneal dialysate on insulin sensitivity in patients treated with CAPD: a 4-month, prospective, multicenter randomized trial. Am J Kidney Dis 62(5):929–938

    CAS  PubMed  Google Scholar 

  81. Mendelson AA, Guan Q, Chafeeva I, da Roza GA, Kizhakkedathu JN, Du C (2013) Hyperbranched polyglycerol is an efficacious and biocompatible novel osmotic agent in a rodent model of peritoneal dialysis. Perit Dial Int 33:15–27

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu Y, Ma X, Zheng J, Jia J, Yan T (2017) Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on cardiovascular events and residual renal function in dialysis patients: a meta-analysis of randomized controlled trials. BMC Nephrol 18(1):206

    PubMed  PubMed Central  Google Scholar 

  83. Medcalf JF, Harris KP, Walls J (2001) Role of diuretics in the preservation of residual renal function in patients on continuous ambulatory peritoneal dialysis. Kidney Int 59(3):1128–1133

    CAS  PubMed  Google Scholar 

  84. Whitty R, Bargman JM, Kiss A, Dresser L, Lui P (2017) Residual kidney function and peritoneal dialysis-associated peritonitis treatment outcomes. Clin J Am Soc Nephrol 12(12):2016–2022

    PubMed  PubMed Central  Google Scholar 

  85. Dittrich E, Puttinger H, Schillinger M, Lang I, Stefenelli T, Hörl WH, Vychytil A (2006) Effect of radio contrast media on residual renal function in peritoneal dialysis patients—a prospective study. Nephrol Dial Transpl 21(5):1334–1339

    Google Scholar 

  86. Garofalo C, Borrelli S, De Stefano T et al (2019) Incremental dialysis in ESRD: systematic review and meta-analysis. J Nephrol (Epub ahead of print)

  87. Bellizzi V, Conte G, Borrelli S, “Conservative Treatment of CKD” Study Group of the Italian Society of Nephrology et al (2017) Controversial issues in CKD clinical practice: position statement of the CKD-treatment working group of the Italian Society of Nephrology. J Nephrol 30(2):159–170

    PubMed  Google Scholar 

  88. http://uremic-toxins.org/documents/2007-krems-review-EUTox-KL-Update-1-UB.pdf. Accessed 19 Sept 2019

  89. Duranton F, Cohen G, De Smet R, European Uremic Toxin Work Group et al (2012) Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 23(7):1258–1270

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Carlo Garofalo.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrelli, S., De Nicola, L., Minutolo, R. et al. Sodium toxicity in peritoneal dialysis: mechanisms and “solutions”. J Nephrol 33, 59–68 (2020). https://doi.org/10.1007/s40620-019-00673-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-019-00673-4

Keywords

Navigation