Advertisement

Testosterone in renal transplant patients: effect on body composition and clinical parameters

  • Danilo Lofaro
  • Anna Perri
  • Antonio Aversa
  • Benedetta Aquino
  • Martina Bonofiglio
  • Antonella La Russa
  • Maria Giovanna Settino
  • Francesca Leone
  • Alessandro Ilacqua
  • Filomena Armentano
  • Donatella Vizza
  • Simona Lupinacci
  • Giuseppina Toteda
  • Renzo Bonofiglio
Original Article

Abstract

Background

Clinical studies have demonstrated that, after renal transplantation (TX), testosterone deficiency (TD) at the time of the procedure is independently associated with lower survival of the patient and graft. However, data between TD and the functional CAG polymorphism of the androgen receptor promoter (AR) are discordant. We investigated the prevalence of TD and its association with body composition, biochemical parameters, the Aging Males’ Symptoms rating scale (AMS) domains and AR polymorphism.

Methods

In 112 TX patients, we assessed the AMS, biochemical/hormonal (FSH/LH/TT) anthropometric/bioimpedance analysis parameters, and AR CAG polymorphism of AR by gene sequencing.

Results

Median values of total testosterone (TT) were 340 ng/dl and 52% of TX patients were affected by TD. Significant correlations between TT and FSH and FSH and LH (p = 0.005, p < 0.0001, respectively) were found. TD patients had lower estimated glomerular filtration rate (eGFR) and hemoglobin (Hb) (p = 0.034, p = 0.022 respectively) and showed higher values of C-reactive protein (p = 0.023) and fat tissue index/adipose tissue mass (p = 0.034 and p = 0.021, respectively), and lower values of serum albumin (p = 0.003) and high-density lipoprotein-cholesterol (p = 0.038) levels. Significant differences were found in the number of patients on mammalian target of rapamycin inhibitors immunosuppressant therapy (p = 0.045). Logistic regression analysis did not show any correlation between age, AMS scores, TT or CAG repeat length, gonadotropins, time of the transplant, and dialysis.

Conclusions

Our results suggest that in TX recipients an appropriate sexual hormonal evaluation should be performed, as we found a high prevalence of TD. However, further studies are needed to clarify the association between TD and patient and graft survival.

Keywords

Hypogonadism Testosterone deficiency Renal transplantation Androgen receptor polymorphism 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants enrolled in the study.

References

  1. 1.
    Carrero J, Stenvinkel P (2012) The vulnerable man: impact of testosterone deficiency on the uraemic phenotype. Nephrol Dial Transplant 27:4030–4041CrossRefPubMedGoogle Scholar
  2. 2.
    Snyder G, Shoskes DA (2016) Hypogonadism and testosterone replacement therapy in end-stage renal disease (ESRD) and transplant patients. Transl Androl Urol 5:885–889CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dunkel L, Raivio T, Laine J, Holmberg C (1997) Circulating luteinizing hormone receptor inhibitor(s) in boys with chronic renal failure. Kidney Int 51:777–784CrossRefPubMedGoogle Scholar
  4. 4.
    Schmidt A, Luger A, Horl WH (2002) Sexual hormone abnormalities in male patients with renal failure. Nephrol Dial Transplant 17:368–371CrossRefPubMedGoogle Scholar
  5. 5.
    Carrero JJ, Kyriazis J, Sonmez A, Tzanakis I, Qureshi AR, Stenvinkel P, Saglam M, Stylianou K, Yaman H, Taslipinar A, Vural A, Gok M, Yenicesu M, Daphnis E, Yilmaz (2012) MI. Prolactin levels, endothelial dysfunction, and the risk of cardiovascular events and mortality in patients with CKD. Clin J Am Soc Nephrol 7:207–215CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kaufman JM, Vermeulen A (2005) The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 26:833–876CrossRefPubMedGoogle Scholar
  7. 7.
    Dandona P, Rosenberg MT (2010) A practical guide to male hypogonadism in the primary care setting. Int J Clin Pract 64:682–696CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kupelian V, Page ST, Araujo AB, Travison TG, Bremner WJ, McKinlay JB (2006) Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in non-obese men. J Clin Endocrinol Metab 91:843–850CrossRefPubMedGoogle Scholar
  9. 9.
    Palmer BF (2004) Outcomes Associated With Hypogonadism in Men With Chronic Kidney Disease. Advances in Chronic Kidney Disease 11:342–347CrossRefPubMedGoogle Scholar
  10. 10.
    Iglesias P, Carrero JJ, Díez JJ (2012) Gonadal dysfunction in men with chronic kidney disease: clinical features, prognostic implications and therapeutic options. J Nephrol 25:31–42CrossRefPubMedGoogle Scholar
  11. 11.
    Carrero JJ, Qureshi Ar N, Arver S, Parini P, Lindholm B, Bárány P, Heimbürger O, Stenvinkel P (2011) Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol Dial Transplant 26:184–190CrossRefPubMedGoogle Scholar
  12. 12.
    Khaw KT, Dowsett M, Folkerd E, Bingham S, Wareham N, Luben R, Welch A, Day N (2007) Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European Prospective Investigation into Cancer in Norfolk (EPICNorfolk) Prospective Population Study. Circulation 116:2694–2701CrossRefPubMedGoogle Scholar
  13. 13.
    Shoskes DA, Kerr H, Askar M, Goldfarb DA, Schold J (2014) Low Testosterone at Time of Transplant Is Independently Associated with Poor Patient and Graft Survival in Male Renal Transplant Recipients. J Urol 192:1168–1171CrossRefPubMedGoogle Scholar
  14. 14.
    Tauchmanova L, Carrano R, Sabbatini S, De Rosa M, Orio F, Palomba S, Cascella T, Lombardi G, Federico S, Colao AM (2004) Hypothalamic–pituitary–gonadal axis function after successful kidney transplantation in men and women. Hum Reprod 19:867–873CrossRefPubMedGoogle Scholar
  15. 15.
    Schmidt A, Luger A, Hörl WH (2002) Sexual hormone abnormalities in male patients with renal failure. Nephrol Dial Transplant 17:368–371CrossRefPubMedGoogle Scholar
  16. 16.
    Francomano D, Greco EALenzi A, Aversa A (2013) CAG Repeat Testing of Androgen Receptor Polymorphism: Is This Necessary for the Best Clinical Management of Hypogonadism? J Sex Med 10:2373–2381CrossRefPubMedGoogle Scholar
  17. 17.
    Panach-Navarrete J, Martínez-Jabaloyas JM & DE-SDT study group (2017) The influence of comorbidities on the aging males’ symptoms scale in patients with erectile dysfunction. The Aging Male.  https://doi.org/10.1080/13685538..1298585
  18. 18.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Aversa A, Morgentaler A (2015) The practical management of testosterone deficiency in men. Nat Rev Urol 12:641–650CrossRefPubMedGoogle Scholar
  20. 20.
    Dang J, Peng L, Zhong HJ, Huo ZH (2015) Androgen receptor (CAG)n polymorphisms and breast cancer risk in a Han Chinese population. Genet Mol Res 14:10258–10266CrossRefPubMedGoogle Scholar
  21. 21.
    Khurana KK, Navaneethan SD, Arrigain S, Schold JD, Nally JV, Shoskes DA (2014) Serum testosterone levels and mortality in men with CKD stages 3–4. Am J Kidney Dis 64:367–374CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vanrenterghem Y, Ponticelli C, Morales JM, Abramowicz D, Baboolal K, Eklund B, Kliem V, Legendre C, Morais Sarmento AL, Vincenti F (2003) Prevalence and management of anemia in renal transplant recipients: a European survey. Am J Transplant 3:835–845CrossRefPubMedGoogle Scholar
  23. 23.
    Gafter-Gvili A, Ayalon-Dangur I, Cooper L, Shochat T, Rahamimov R, Gafter U, Mor E, Grossman A (2017) Post-transplantation anemia in kidney transplant recipients: A retrospective cohort study. Medicine (Baltimore) 96:e7735CrossRefGoogle Scholar
  24. 24.
    Majzoub A, Shoskes DA (2016) A case series of the safety and efficacy of testosterone replacement therapy in renal failure and kidney transplant patients. Translational Andrology Urology 5:814–818CrossRefPubMedGoogle Scholar
  25. 25.
    Georgiou K, Dounousi E, Harissis HV (2016) Calcineurin inhibitors and male fertility after renal transplantation: a review. Andrologia 48:483–490CrossRefPubMedGoogle Scholar
  26. 26.
    Cavanaugh TM, Schoenemen H, Goebel J (2012) The impact of sirolimus on sex hormones in male adolescent kidney recipients. Pediatr Transplant 16:280–285CrossRefPubMedGoogle Scholar
  27. 27.
    Krämer BK, Neumayer HH, Stahl R, Pietrzyk M, Krüger B, Pfalzer B, Bourbigot B, Campbell S, Whelchel J, Eris J, Vitko S, Budde K, RADA2307 Study Group (2005) Graft function, cardiovascular risk factors, and sex hormones in renal transplant recipients on an immunosuppressive regimen of everolimus, reduced dose of cyclosporine, and basiliximab. Transplant Proc 37:1601–1604CrossRefPubMedGoogle Scholar
  28. 28.
    Boobes Y, Bernieh B, Saadi H, Raafat Al Hakim M, Abouchacra S (2010) Gonadal dysfunction and infertility in kidney transplant patients receiving sirolimus. Int Urol Nephrol 42:493–498CrossRefPubMedGoogle Scholar
  29. 29.
    Arnaud L, Nordin A, Lundholm H, Svenungsson E, Hellbacher E, Wikner J, Zickert A, Gunnarsson I (2017) Effect of Corticosteroids and Cyclophosphamide on Sex Hormone Profiles in Male Patients With Systemic Lupus Erythematosus or Systemic Sclerosis. Arthritis Rheumatol 69:1272–1279CrossRefPubMedGoogle Scholar
  30. 30.
    Fugl-Meyer KS, Nilsson M, Hylander B, Lehtihet M (2017) Sexual Function and Testosterone Level in Men With Conservatively Treated Chronic Kidney Disease. American Journal of Men’s Health 11:1069–1076CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Navaneethan SD, Vecchio M, Johnson DW, Saglimbene V, Graziano G, Pellegrini F, Lucisano G, Craig JC, Ruospo M, Gentile G, Manfreda VM, Querques M, Stroumza P, Torok M, Celia E, Gelfman R, Ferrari JN, Bednarek-Skublewska A, Dulawa J, Bonifati C, Hegbrant J, Wollheim C, Jannini EA, Strippoli GF (2010) Prevalence and Correlates of Self-Reported Sexual Dysfunction in CKD: A Meta-analysis of Observational Studies. Am J Kidney Dis 56:670–685CrossRefPubMedGoogle Scholar
  32. 32.
    Tavallaii SA, Mirzamani M, Heshmatzade Behzadi A, Assari S, Khoddami Vishteh HR, Hajarizadeh B, Einollahi B (2009) Sexual Function: A Comparison Between Male Renal Transplant Recipients and Hemodialysis Patients. J Sex Med 6:142–148CrossRefPubMedGoogle Scholar
  33. 33.
    Park MG, Koo HS, Lee B (2013) Characteristics of testosterone deficiency syndrome in men with chronic kidney disease and male renal transplant recipients: a cross-sectional study. Transplant Proc 45:2970–2974CrossRefPubMedGoogle Scholar
  34. 34.
    Tirabassi G, Cignarelli A, Perrini S, Delli Muti N, Furlani G, Gallo M, Pallotti F, Paoli D, Giorgino F, Lombardo F, Gandini L, Lenzi A, Balercia G (2015) Influence of CAG Repeat Polymorphism on the Targets of Testosterone Action. Int J Endocrinol2015:298107Google Scholar
  35. 35.
    Corona G, Giagulli VA, Maseroli E, Vignozzi L, Aversa A, Zitzmann M, Saad F, Mannucci E, Maggi M (2016) Testosterone supplementation and body composition: results from a meta-analysis of observational studies. J Endocrinol Invest 39:967–981CrossRefPubMedGoogle Scholar
  36. 36.
    Pantik C, Cho YE, Hathaway D, Tolley E, Cashion A (2017) Characterization of Body Composition and Fat Mass Distribution 1 Year After Kidney. Transplantation Prog Transplant 27:10–15CrossRefPubMedGoogle Scholar
  37. 37.
    Rossi AP, Zaza G, Zanardo M (2018) Assessment of physical performance and body composition in male renal transplant patients. J Neph  https://doi.org/10.1007/s40620-018-0483-5
  38. 38.
    Guida B, Trio R, Laccetti R, Nastasi A, Salvi E, Perrino NR, Caputo C, Rotaia E, Federico S, Sabbatini M (2007) Role of dietary intervention on metabolic abnormalities and nutritional status after renal transplantation. Nephrol Dial Transplant 22:3304–3310CrossRefPubMedGoogle Scholar
  39. 39.
    Nagy K, Ujszaszi A, Remport A, Kovesdy CP, Mucsi I, Molnar MZ, Mathe Z (2016) Association of Abdominal Circumference, Body Mass Index, and Inflammation in Kidney Transplant Recipients. J Ren Nutr 26:325–333CrossRefPubMedGoogle Scholar
  40. 40.
    Eckersten D, Giwercman A, Christensson A (2015) Male patients with terminal renal failure exhibit low serum levels of antimüllerian hormone. Asian J Androl 17:149–153CrossRefPubMedGoogle Scholar
  41. 41.
    Aniort J, Kaysi S, Garrouste C (2018) CKD complications in kidney-transplanted patients going back to dialysis: impact on patients outcomes. J Neph 31:147–155CrossRefGoogle Scholar

Copyright information

© Italian Society of Nephrology 2018

Authors and Affiliations

  • Danilo Lofaro
    • 1
  • Anna Perri
    • 1
  • Antonio Aversa
    • 2
  • Benedetta Aquino
    • 1
  • Martina Bonofiglio
    • 1
  • Antonella La Russa
    • 1
  • Maria Giovanna Settino
    • 1
  • Francesca Leone
    • 1
  • Alessandro Ilacqua
    • 3
  • Filomena Armentano
    • 1
  • Donatella Vizza
    • 1
  • Simona Lupinacci
    • 1
  • Giuseppina Toteda
    • 1
  • Renzo Bonofiglio
    • 1
  1. 1.“Kidney and Transplantation” Research Center, Department of Nephrology, Dialysis and TransplantationAnnunziata HospitalCosenzaItaly
  2. 2.Department of Experimental and Clinical MedicineMagna Græcia UniversityCatanzaroItaly
  3. 3.Department of Human Movement and Sport SciencesItalian University of Sport and Movement “Foro Italico”RomeItaly

Personalised recommendations