Skip to main content

Advertisement

Log in

A STARD-compliant prediction model for diagnosing thrombotic microangiopathies

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Aim of the study was the definition of a predictive model for the initial diagnosis of thrombotic microangiopathies (TMA). We retrospectively collected data on all adult patients admitted to the Gemelli Hospital from 2010 to 2014. ICD-9 codes from primary diagnoses were used for TMA diagnosis. Demographic and laboratory characteristics on admission of patients with TMA were then compared with a random sample of 500 patients with other diagnoses. The prediction model was externally validated in a cohort from another hospital. Overall, 23 of 187,183 patients admitted during the study period received a primary diagnosis of TMA. LDH (OR 1.26, 95% CI 1.05, 1.63) and platelets (OR 0.96, 95% CI 0.94, 0.98) were the only independent predictors of TMA. The AUROC of the final model including only LDH and platelets was 0.96 (95% CI 0.91, 1.00). The Hosmer–Lemeshow (HL) test (p = 0.54) suggested good calibration. Our model also confirmed good discriminatory power (AUROC 0.72 95% CI 0.60, 0.84) and calibration (HL test p = 0.52) in the validation sample. We present a simple prediction model for use in diagnosing TMA in hospitalized patients. The model performs well and can help clinicians to identify patients at high risk of TMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. George JN, Nester CM (2014) Syndromes of Thrombotic Microangiopathy. N Engl J Med 371:654–666. https://doi.org/10.1056/NEJMra1312353

    Article  CAS  PubMed  Google Scholar 

  2. Zheng X, Majerus EM, Sadler JE (2002) ADAMTS13 and TTP. Curr Opin Hematol 9:389–394. https://doi.org/10.1097/00062752-200209000-00001

    Article  PubMed  Google Scholar 

  3. McMinn JR, George JN (2001) Evaluation of women with clinically suspected thrombotic thrombocytopenic purpura-hemolytic uremic syndrome during pregnancy. J Clin Apher 16:202–209

    Article  CAS  PubMed  Google Scholar 

  4. Booth KK, Terrell DR, Vesely SK, George JN (2011) Systemic infections mimicking thrombotic thrombocytopenic purpura. Am J Hematol 86:743–751. https://doi.org/10.1002/ajh.22091

    Article  PubMed  PubMed Central  Google Scholar 

  5. George JN (2011) Systemic malignancies as a cause of unexpected microangiopathic hemolytic anemia and thrombocytopenia. Oncol Williston Park N 25:908–914

    Google Scholar 

  6. Mannucci PM, Peyvandi F (2007) TTP and ADAMTS13: when is testing appropriate? Hematol Am Soc Hematol Educ Progr 2007:121–126. https://doi.org/10.1182/asheducation-2007.1.121

    Google Scholar 

  7. Garg AX, Suri RS, Barrowman N, Rehman F, Matsell D, Rosas-Arellano MP, Salvadori M, Haynes RB, Clark WF (2003) Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA 290:1360–1370. https://doi.org/10.1001/jama.290.10.1360

    Article  CAS  PubMed  Google Scholar 

  8. Scully M, Yarranton H, Liesner R, Cavenagh J, Hunt B, Benjamin S, Bevan D, Mackie I, Machin S (2008) Regional UK TTP Registry: correlation with laboratory ADAMTS 13 analysis and clinical features. Br J Haematol 142:819–826. https://doi.org/10.1111/j.1365-2141.2008.07276.x

    Article  PubMed  Google Scholar 

  9. Noris M, Remuzzi G (2009) Atypical hemolytic-uremic syndrome. N Engl J Med 361:1676–1687. https://doi.org/10.1056/NEJMra0902814

    Article  CAS  PubMed  Google Scholar 

  10. George JN (2006) Thrombotic thrombocytopenic purpura. N Engl J Med 354:1927–1935. https://doi.org/10.1056/NEJMcp053024

    Article  CAS  PubMed  Google Scholar 

  11. Brunelli SM, Claxton A, Mehta S, Anum EA (2015) Consequences of hemolytic uremic syndrome among hemodialysis patients. J Nephrol 28:361–367. https://doi.org/10.1007/s40620-014-0149-x

    Article  CAS  PubMed  Google Scholar 

  12. Mead PS, Griffin PM (1998) Escherichia coli O157:H7. Lancet 352:1207–1212. https://doi.org/10.1016/S0140-6736(98)01267-7

    Article  CAS  PubMed  Google Scholar 

  13. Galbusera M, Noris M, Remuzzi G (2009) Inherited thrombotic thrombocytopenic purpura. Haematologica 94:166–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vande WJ, Delmas Y, Ardissino G, Wang J, Kincaid JF, Haller H (2016) Improved renal recovery in patients with atypical hemolytic uremic syndrome following rapid initiation of eculizumab treatment. J Nephrol. https://doi.org/10.1007/s40620-016-0288-3

    Google Scholar 

  15. Asif A, Nayer A, Haas CS (2017) Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab. J Nephrol 30:347–362. https://doi.org/10.1007/s40620-016-0357-7

    Article  CAS  PubMed  Google Scholar 

  16. Ruggenenti P, Noris M, Remuzzi G (2001) Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int 60:831–846. https://doi.org/10.1046/j.1523-1755.2001.060003831.x

    Article  CAS  PubMed  Google Scholar 

  17. Crowther MA, George JN (2008) Thrombotic thrombocytopenic purpura: 2008 update. Cleve Clin J Med 75:369–375. https://doi.org/10.3949/ccjm.75.5.369

    Article  PubMed  Google Scholar 

  18. Galbusera M, Noris M, Remuzzi G (2006) Thrombotic thrombocytopenic purpura–then and now. Semin Thromb Hemost 32:81–89. https://doi.org/10.1055/s-2006-939763

    Article  PubMed  Google Scholar 

  19. Campistol Plana JM, Arias M, Ariceta Iraola G, Blasco M, Espinosa M, Grinyó JM, Praga Terente M, Torra Balcells R, Vilalta R, Rodríguez de Córdoba S (2013) Actualización en síndrome hemolítico urémico atípico: diagnóstico y tratamiento. Documento de consenso. Nefrol Publ Of Soc Esp Nefrol 33:27–45. https://doi.org/10.3265/Nefrologia.pre2012.Nov.11781

    Google Scholar 

Download references

Acknowledgements

Gambaro and Ferraro designed the research; Gambaro, Ferraro, Lombardi, De Stefano, Zuppi, Bonelli, Buonocore, Cervellin and Lippi acquired the data; Ferraro and Lombardi performed the statistical analyses; Gambaro, Ferraro, Lombardi, De Stefano and Lippi drafted the paper; Zuppi, Bonelli, Buonocore, Cervellin, Naticchia and Sturniolo critically revised the paper; all the authors approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Manuel Ferraro.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interests.

Ethical approval

The study protocol was approved by the IRB of the Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraro, P.M., Lombardi, G., Naticchia, A. et al. A STARD-compliant prediction model for diagnosing thrombotic microangiopathies. J Nephrol 31, 405–410 (2018). https://doi.org/10.1007/s40620-018-0468-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-018-0468-4

Keywords

Navigation