Journal of Nephrology

, Volume 30, Issue 5, pp 635–643 | Cite as

The use of bone mineral density measured by dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed microtomography in chronic kidney disease

  • Martin Jannot
  • Fabrice Mac-Way
  • Vanessa Lapierre
  • Marie-Helene Lafage-Proust
Review

Abstract

Chronic kidney disease (CKD) is a risk factor for fractures. The current evaluation of fracture risk is based upon the combination of various clinical factors and quantitative imaging of bone. X-ray-based tools were developed to evaluate bone status and predict fracture risk. Dual energy X-ray absorptiometry (DXA) is available worldwide. Longitudinal studies showed that low areal Bone Mineral Density (BMD) measured by DXA predicts fractures in the CKD population as it does in non uremic populations, with good specificity and moderate sensitivity. Peripheral quantitative computed tomography (pQCT) and high resolution pQCT are research tools which measure volumetric BMD at the tibia and radius. They are able to discriminate between the cortical and trabecular envelopes which are differentially affected by renal osteodystrophy. In CKD, a rapid thinning and increased porosity at the cortex is observed which is associated with increased the risk for fracture.

Keywords

DXA pQCT HRpQCT Fractures Chronic kidney disease Bone 

References

  1. 1.
    Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman-Breen C (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58(1):396–399CrossRefPubMedGoogle Scholar
  2. 2.
    Maravic M, Ostertag A, Torres PU, Cohen-Solal M (2014) Incidence and risk factors for hip fractures in dialysis patients. Osteoporos Int 25(1):159–165CrossRefPubMedGoogle Scholar
  3. 3.
    Beaubrun AC, Kilpatrick RD, Freburger JK, Bradbury BD, Wang L, Brookhart MA (2013) Temporal trends in fracture rates and postdischarge outcomes among hemodialysis patients. J Am Soc Nephrol 24(9):1461–1469CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lin ZZ, Wang JJ, Chung CR, Huang PC, Su BA, Cheng KC, Chio CC, Chien CC (2014) Epidemiology and mortality of hip fracture among patients on dialysis: Taiwan National Cohort Study. Bone 64:235–239CrossRefPubMedGoogle Scholar
  5. 5.
    Nickolas TL, McMahon DJ, Shane E (2006) Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 17(11):3223–3232CrossRefPubMedGoogle Scholar
  6. 6.
    Ball AM, Gillen DL, Sherrard D, Weiss NS, Emerson SS, Seliger SL, Kestenbaum BR, Stehman-Breen C (2002) Risk of hip fracture among dialysis and renal transplant recipients. JAMA 288(23):3014–3018CrossRefPubMedGoogle Scholar
  7. 7.
    Mittalhenkle A, Gillen DL, Stehman-Breen CO (2004) Increased risk of mortality associated with hip fracture in the dialysis population. Am J Kidney Dis 44(4):672–679CrossRefPubMedGoogle Scholar
  8. 8.
    Tentori F, McCullough K, Kilpatrick RD, Bradbury BD, Robinson BM, Kerr PG, Pisoni RL (2014) High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 85(1):166–167CrossRefPubMedGoogle Scholar
  9. 9.
    Keaveny TM, Bouxsein ML (2008) Theoretical implications of the biomechanical fracture threshold. J Bone Miner Res 23(10):1541–1547CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Seeman E (2008) Bone quality: the material and structural basis of bone strength. J Bone Miner Metab 26:1–8CrossRefPubMedGoogle Scholar
  11. 11.
    Currey JD (1979) Mechanical properties of bone tissues with greatly differing functions. J Biomech 12(4):313–319CrossRefPubMedGoogle Scholar
  12. 12.
    Van Der Linden JC, Verhaar JA (2001) Weinans H A three-dimensional simulation of age-related remodeling in trabecular bone. J Bone Miner Res 16(4):688–696CrossRefGoogle Scholar
  13. 13.
    Nickolas TL, Stein E, Cohen A, Thomas V, Staron RB, McMahon DJ, Leonard MB, Shane E (2010) Bone mass and microarchitecture in CKD patients with fracture. J Am Soc Nephrol 21(8):1371–1380CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Delmas PD, Van de Langerijt L, Watts NB et al (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 20:557–563CrossRefPubMedGoogle Scholar
  15. 15.
    Kim N, Rowe BH, Raymond G, Jen H, Colman I, Jackson SA, Siminoski KG, Chahal AM, Folk D (2004) Majumdar SR Underreporting of vertebral fractures on routine chest radiography. AJR Am J Roentgenol 182(2):297–300CrossRefPubMedGoogle Scholar
  16. 16.
    Lespessailles E, Gadois C, Kousignian I, Neveu JP, Fardellone P, Kolta S, Roux C, Do-Huu JP, Benhamou CL (2008) Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study. Osteoporos Int 19(7):1019–1028CrossRefPubMedGoogle Scholar
  17. 17.
    Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, Hochberg MC, Vogt MT, Orwoll ES (2005) Hip fracture in women without osteoporosis. Study of Osteoporotic Fractures Research Group. J Clin Endocrinol Metab 90(5):2787–2793CrossRefPubMedGoogle Scholar
  18. 18.
    Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM (1995 23) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332(12):767–773CrossRefPubMedGoogle Scholar
  19. 19.
    Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD (2005) Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 20(10):1813–1819CrossRefPubMedGoogle Scholar
  20. 20.
    Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114(11):919–923CrossRefPubMedGoogle Scholar
  21. 21.
    Lee JH, Lee YK, Oh SH, Ahn J, Lee YE, Pyo JH, Choi YY5, Kim D, Bae SC, Sung YK, Kim DY (2016) A systematic review of diagnostic accuracy of vertebral fracture assessment (VFA) in postmenopausal women and elderly men. Osteoporos Int 27(5):1691–1699CrossRefPubMedGoogle Scholar
  22. 22.
    Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using antero-posterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14(3):302–312CrossRefPubMedGoogle Scholar
  23. 23.
    Bredbenner TL, Mason RL, Havill LM, Orwoll ES, Nicolella DP (2014) Osteoporotic Fractures in Men (MrOS) Study. Fracture risk predictions based on statistical shape and density modeling of the proximal femur. J Bone Miner Res 29(9):2090–2100CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34(1):195–202CrossRefPubMedGoogle Scholar
  25. 25.
    Georgiou E, Virvidakis K, Douskas G, Lambrinoudaki I, Voudiklari S, Katsoudas S, Mountokalakis T, Proukakis C (1997) Body composition changes in chronic hemodialysis patients before and after hemodialysis as assessed by dual-energy X-ray absorptiometry. Metabolism 46(9):1059–1062CrossRefPubMedGoogle Scholar
  26. 26.
    Jamal SA, Hayden JA, Beyene J (2007 May) Low bone mineral density and fractures in long-term hemodialysis patients: a meta-analysis. Am J Kidney Dis 49(5):674–681CrossRefPubMedGoogle Scholar
  27. 27.
    Bucur RC, Panjwani DD, Turner L, Rader T, West SL, Jamal SA (2015) Low bone mineral density and fractures in stages 3–5 CKD: an updated systematic review and meta-analysis. Osteoporos Int 26(2):449–458CrossRefPubMedGoogle Scholar
  28. 28.
    Ketteler M, Elder G, Evenepoel P, Ix JH, Jamal SA, Lafage-Proust MH, Shroff R, Thadhani R, Tonelli M, Kasiske B, Wheeler DC, Leonard MB (2015) Revisiting KDIGO clinical practice guideline on chronic kidney disease-mineral and bone disorder: a commentary from a kidney disease: improving global outcomes controversies conference. Kidney Int 87(3):502–528CrossRefPubMedGoogle Scholar
  29. 29.
    Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND, Vervloet MG, Leonard MB (2017) Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int 92(1):26–36CrossRefPubMedGoogle Scholar
  30. 30.
    Yenchek RH, Ix JH, Shlipak MG, Bauer DC, Rianon NJ, Kritchevsky SB, Harris TB, Newman AB, Cauley JA, Fried LF (2012) Bone mineral density and fracture risk in older individuals with CKD. Health, aging, and body composition study. Clin J Am Soc Nephrol 7(7):1130–1136CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, Fusaro M, Wald R, Weinstein J, Jamal SA (2015) Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res 30(5):913–919CrossRefPubMedGoogle Scholar
  32. 32.
    Limori S, Mori Y, Akita W, Kuyama T, Takada S, Asai T, Kuwahara M, Sasaki S, Tsukamoto Y (2012) Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients—a single-center cohort study. Nephrol Dial Transplant 27(1):345–351CrossRefGoogle Scholar
  33. 33.
    Naylor KL, Jerilynn P, Garg AX, Berger C, Langsetmo L, Adachi JD, Goltzman D, Kovacs CS, Josse RG, Leslie WD (2016) Trabecular bone score and incident fragility fracture risk in adults with reduced kidney function. CJASN 11:2032–2040CrossRefPubMedGoogle Scholar
  34. 34.
    Pérez-Sáez MJ, Herrera S, Prieto-Alhambra D, Vilaplana L, Nogués X, Vera M, Redondo-Pachón D, Mir M, Güerri R, Crespo M, Díez-Pérez A, Pascual J (2017) Bone density, microarchitecture, and material strength in chronic kidney disease patients at the time of kidney transplantation. Osteoporos Int 11 (Epub ahead of print) Google Scholar
  35. 35.
    Clotet J, Martelli Y, Di Gregorio S, Del Río Barquero LM, Humbert LJ (2017) Clin Densitom. Structural parameters of the proximal femur by 3-dimensional dual-energy X-ray absorptiometry software: comparison with quantitative computed tomography. (Epub ahead of print) Google Scholar
  36. 36.
    Denburg MR, Tsampalieros AK, de Boer IH, Shults J, Kalkwarf HJ, Zemel BS, Foerster D, Stokes D, Leonard MB (2013) Mineral metabolism and cortical volumetric bone mineral density in childhood chronic kidney disease. J Clin Endocrinol Metab 98(5):1930–1938CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    de Charry C, Boutroy S, Ellouz R, Duboeuf F, Chapurlat R, Follet H, Pialat JB (2016) Clinical cone beam computed tomography compared to high-resolution peripheral computed tomography in the assessment of distal radius bone. Osteoporos Int 27(10):3073–3082CrossRefPubMedGoogle Scholar
  38. 38.
    Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21(4):543–548CrossRefPubMedGoogle Scholar
  39. 39.
    Schulte FA, Lambers FM, Kuhn G, Müller R (2011) In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Bone 48(3):433–442CrossRefPubMedGoogle Scholar
  40. 40.
    Pelletier S, Vilayphiou N, Boutroy S, Bacchetta J, Sornay-Rendu E, Szulc P, Arkouche W, Guebre-Egziabher F, Fouque D, Chapurlat R (2012) Bone microarchitecture is more severely affected in patients on hemodialysis than in those receiving peritoneal dialysis. Kidney Int 82(5):581–588CrossRefPubMedGoogle Scholar
  41. 41.
    Nickolas TL, Stein EM, Dworakowski E, Nishiyama KK, Komandah-Kosseh M, Zhang CA, McMahon DJ, Liu XS, Boutroy S, Cremers S, Shane E (2013) Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res 28(8):1811–1820CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Iyer SP, Nikkel LE, Nishiyama KK, Dworakowski E, Cremers S, Zhang C, McMahon DJ, Boutroy S, Liu XS, Ratner LE, Cohen DJ, Guo XE, Shane E, Nickolas TL (2014) Kidney transplantation with early corticosteroid withdrawal: paradoxical effects at the central and peripheral skeleton. J Am Soc Nephrol 25(6):1331–1341CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nishiyama KK, Pauchard Y, Nikkel LE, Iyer S, Zhang C, McMahon DJ, Cohen D, Boyd SK, Shane E, Nickolas TL (2015) Longitudinal HR-pQCT and image registration detects endocortical bone loss in kidney transplantation patients. J Bone Miner Res 30(3):554–561CrossRefPubMedGoogle Scholar
  44. 44.
    Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E (2013) A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone 54(1):8–20CrossRefPubMedGoogle Scholar
  45. 45.
    Chow JT, Khosla S, Melton LJ 3rd, Atkinson EJ, Camp JJ, Kearns AE (2008) Abdominal aortic calcification, BMD, and bone microstructure: a population-based study. J Bone Miner Res 23(10):1601–1612CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pelletier S, Confavreux CB, Haesebaert J, Guebre-Egziabher F, Bacchetta J, Carlier MC, Chardon L, Laville M, Chapurlat R, London GM, Lafage-Proust MH, Fouque D (2015) Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporosis Int 26(8):2165–2174CrossRefGoogle Scholar
  47. 47.
    Nuzzo S, Lafage-Proust MH, Martin-Badosa E, Boivin G, Thomas T, Alexandre C, Peyrin F (2002) Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J Bone Miner Res 17(8):1372–1382CrossRefPubMedGoogle Scholar
  48. 48.
    Bala Y, Depalle B, Douillard T, Meille S, Clément P, Follet H, Chevalier J, Boivin G (2011) Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented indentation study. J Mech Behav Biomed Mater 4(7):1473–1482CrossRefPubMedGoogle Scholar
  49. 49.
    Hesse B, Varga P, Langer M, Pacureanu A, Schrof S, Männicke N, Suhonen H, Maurer P, Cloetens P, Peyrin F, Raum K (2015) Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT. J Bone Miner Res 30(2):346–356CrossRefPubMedGoogle Scholar
  50. 50.
    Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, Honig S, Regatte RR (2017) J Magn MRI assessment of bone structure and microarchitecture. Reson Imaging. (Epub ahead of print) Google Scholar
  51. 51.
    Rajapakse CS, Leonard MB, Bhagat YA, Sun W, Magland JF, Wehrli FW (2012) Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology 262:921–931CrossRefGoogle Scholar
  52. 52.
    Techawiboonwong A, Song HK, Leonard MB, Wehrli FW (2008) Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology 248:824–833CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Nephrology 2017

Authors and Affiliations

  • Martin Jannot
    • 1
  • Fabrice Mac-Way
    • 2
  • Vanessa Lapierre
    • 1
  • Marie-Helene Lafage-Proust
    • 1
  1. 1.INSERM 1059, SAINBIOSEUniversité de LyonSaint-Etienne Cedex 2France
  2. 2.Centre de Recherche du CHU de Québec, Hôpital Hôtel-Dieu de Québec, Division of Nephrology and EndocrinologyLaval UniversityQuébec CityCanada

Personalised recommendations