Skip to main content

Advertisement

Log in

Epigenetics: a potential key mechanism involved in the pathogenesis of cardiorenal syndromes

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Epigenetics is defined as the heritable changes in gene expression patterns which are not directly encoded by modifications in the nucleotide DNA sequence of the genome, including higher order chromatin organization, DNA methylation, cytosine modifications, covalent histone tail modifications, and short non-coding RNA molecules. Recently, much attention has been paid to the role and the function of epigenetics and epimutations in the cellular and subcellular pathways and in the regulation of genes in the setting of both kidney and cardiovascular disease. Indeed, deregulation of histone alterations has been highlighted in a large spectrum of renal and cardiac disease, including chronic and acute renal injury, renal and cardiac fibrosis, cardiac hypertrophy and failure, kidney congenital anomalies, renal hypoxia, and diabetic renal complications. Nevertheless, the role of epigenetics in the pathogenesis and pathophysiology of cardiorenal syndromes is currently underexplored. Given the significant clinical relevance of heart-kidney crosstalk, efforts in the research for new action mechanisms concurrently operating in both pathologies are thus of maximum interest. This review focuses on epigenetic mechanisms involved in heart and kidney disease, and their possible role in the setting of cardiorenal syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lane K et al (2013) Renohepatic crosstalk: does acute kidney injury cause liver dysfunction? Nephrol Dial Transplant 28(7):1634–1647

    Article  PubMed  Google Scholar 

  2. Azimzadeh Jamalkandi S, Azadian E, Masoudi-Nejad A (2014) Human RNAi pathway: crosstalk with organelles and cells. Funct Integr Genomics 14(1):31–46

    Article  CAS  PubMed  Google Scholar 

  3. Molls RR, Rabb H (2004) Limiting deleterious cross-talk between failing organs. Crit Care Med 32(11):2358–2359

    Article  PubMed  Google Scholar 

  4. Virzi G et al (2014) Heart-kidney crosstalk and role of humoral signaling in critical illness. Crit Care 18(1):201

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ronco C et al (2008) Cardiorenal syndrome. J Am Coll Cardiol 52(19):1527–1539

    Article  PubMed  Google Scholar 

  6. Goh CY et al (2011) Cardiorenal syndrome: a complex series of combined heart/kidney disorders. Contrib Nephrol 174:33–45

    Article  PubMed  Google Scholar 

  7. McCullough PA et al (2013) Pathophysiology of the cardiorenal syndromes: executive summary from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol 182:82–98

    Article  PubMed  Google Scholar 

  8. Rosner MH, Ronco C, Okusa MD (2012) The role of inflammation in the cardio-renal syndrome: a focus on cytokines and inflammatory mediators. Semin Nephrol 32(1):70–78

    Article  CAS  PubMed  Google Scholar 

  9. Virzi GM et al (2015) Oxidative stress: dual pathway induction in cardiorenal syndrome type 1 pathogenesis. Oxid Med Cell Longev 2015:391790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Virzi GM et al (2015) Pro-apoptotic effects of plasma from patients with cardiorenal syndrome on human tubular cells. Am J Nephrol 41(6):474–484

    Article  CAS  PubMed  Google Scholar 

  11. Virzi GM et al (2012) Cardiorenal syndrome type 1 may be immunologically mediated: a pilot evaluation of monocyte apoptosis. Cardiorenal Med 2(1):33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brocca A et al (2015) Cardiorenal syndrome type 5: in vitro cytotoxicity effects on renal tubular cells and inflammatory profile. Anal Cell Pathol (Amst) 2015:469461

    Google Scholar 

  13. Rana I et al (2015) Contribution of microRNA to pathological fibrosis in cardio-renal syndrome: impact of uremic toxins. Physiol Rep 3(4). doi:10.14814/phy2.12371

  14. Gonzalez-Calero L, Martin-Lorenzo M, Alvarez-Llamas G (2014) Exosomes: a potential key target in cardio-renal syndrome. Front Immunol 5:465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fu Q et al (2014) Cardiorenal syndrome: pathophysiological mechanism, preclinical models, novel contributors and potential therapies. Chin Med J (Engl) 127(16):3011–3018

    Google Scholar 

  16. Hatamizadeh P et al (2013) Cardiorenal syndrome: pathophysiology and potential targets for clinical management. Nat Rev Nephrol 9(2):99–111

    Article  CAS  PubMed  Google Scholar 

  17. Virzi GM et al (2016) Molecular and genetic mechanisms involved in the pathogenesis of cardiorenal cross talk. Pathobiology 83(4):201–210

    Article  PubMed  Google Scholar 

  18. Fratkin E, Bercovici S, Stephan DA (2012) The implications of ENCODE for diagnostics. Nat Biotechnol 30(11):1064–1065

    Article  CAS  PubMed  Google Scholar 

  19. Reddy MA, Natarajan R (2011) Epigenetics in diabetic kidney disease. J Am Soc Nephrol 22(12):2182–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu LM, Xu Y (2015) Epigenetic regulation in cardiac fibrosis. World J Cardiol 7(11):784–791

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  22. Ruthenburg AJ et al (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8(12):983–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407–412

    Article  CAS  PubMed  Google Scholar 

  24. Hong L et al (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem 268(1):305–314

    CAS  PubMed  Google Scholar 

  25. Barth TK, Imhof A (2010) Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci 35(11):618–626

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z et al (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138(5):1019–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waterborg JH (2002) Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochem Cell Biol 80(3):363–378

    Article  CAS  PubMed  Google Scholar 

  28. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97

    Article  CAS  PubMed  Google Scholar 

  29. Petruk S et al (2013) Stepwise histone modifications are mediated by multiple enzymes that rapidly associate with nascent DNA during replication. Nat Commun 4:2841

    Article  PubMed  CAS  Google Scholar 

  30. Petruk S et al (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150(5):922–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dwivedi RS et al (2011) Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int 79(1):23–32

    Article  PubMed  Google Scholar 

  32. Bomsztyk K, Denisenko O (2013) Epigenetic alterations in acute kidney injury. Semin Nephrol 33(4):327–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schena FP, Serino G, Sallustio F (2014) MicroRNAs in kidney diseases: new promising biomarkers for diagnosis and monitoring. Nephrol Dial Transplant 29(4):755–763

    Article  CAS  PubMed  Google Scholar 

  34. Tang J, Zhuang S (2015) Epigenetics in acute kidney injury. Curr Opin Nephrol Hypertens 24(4):351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez-Romo R et al (2015) Epigenetic regulation in the acute kidney injury (AKI) to chronic kidney disease transition (CKD). Nephrology (Carlton) 20(10):736–743

  36. Huang J et al (2015) Histone acetyltransferase PCAF regulates inflammatory molecules in the development of renal injury. Epigenetics 10(1):62–72

    Article  PubMed  PubMed Central  Google Scholar 

  37. Smyth LJ et al (2014) DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics 9(3):366–376

    Article  CAS  PubMed  Google Scholar 

  38. Zawada AM, Rogacev KS, Heine GH (2013) Clinical relevance of epigenetic dysregulation in chronic kidney disease-associated cardiovascular disease. Nephrol Dial Transplant 28(7):1663–1671

    Article  PubMed  Google Scholar 

  39. Witasp A et al (2014) Novel insights from genetic and epigenetic studies in understanding the complex uraemic phenotype. Nephrol Dial Transplant 29(5):964–971

    Article  PubMed  Google Scholar 

  40. Cao Y et al (2014) Impact of epigenetics in the management of cardiovascular disease: a review. Eur Rev Med Pharmacol Sci 18(20):3097–3104

    CAS  PubMed  Google Scholar 

  41. Abi Khalil C (2014) The emerging role of epigenetics in cardiovascular disease. Ther Adv Chronic Dis 5(4):178–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Yang J, Xu WW, Hu SJ (2015) Heart failure: advanced development in genetics and epigenetics. Biomed Res Int 2015:352734

    PubMed  PubMed Central  Google Scholar 

  43. Clementi A et al (2015) Advances in the pathogenesis of cardiorenal syndrome type 3. Oxid Med Cell Longev 2015:148082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Greco CM, Condorelli G (2015) Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol 12(8):488–497

    Article  CAS  PubMed  Google Scholar 

  45. Schiano C et al (2015) Epigenetic-related therapeutic challenges in cardiovascular disease. Trends Pharmacol Sci 36(4):226–235

    Article  CAS  PubMed  Google Scholar 

  46. Mahmoud SA, Poizat C (2013) Epigenetics and chromatin remodeling in adult cardiomyopathy. J Pathol 231(2):147–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zeisberg M, Zeisberg EM (2015) Precision renal medicine: a roadmap towards targeted kidney fibrosis therapies. Fibrogenesis Tissue Repair 8:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Reddy MA, Natarajan R (2015) Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int 88(2):250–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beckerman P, Ko YA, Susztak K (2014) Epigenetics: a new way to look at kidney diseases. Nephrol Dial Transplant 29(10):1821–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiao D et al (2014) Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res 101(3):373–382

    Article  CAS  PubMed  Google Scholar 

  51. Kaneda R et al (2009) Genome-wide histone methylation profile for heart failure. Genes Cells 14(1):69–77

    Article  CAS  PubMed  Google Scholar 

  52. Movassagh M et al (2011) Distinct epigenomic features in end-stage failing human hearts. Circulation 124(22):2411–2422

    Article  PubMed  PubMed Central  Google Scholar 

  53. Johnson AB, Barton MC (2007) Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res 618(1–2):149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marumo T et al (2008) Epigenetic regulation of BMP7 in the regenerative response to ischemia. J Am Soc Nephrol 19(7):1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zager RA, Johnson AC, Becker K (2011) Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and “end-stage” kidney disease. Am J Physiol Renal Physiol 301(6):F1334–F1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoppe CC et al (2007) Effects of dietary protein restriction on nephron number in the mouse. Am J Physiol Regul Integr Comp Physiol 292(5):R1768–R1774

    Article  CAS  PubMed  Google Scholar 

  57. Ingrosso D et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361(9370):1693–1699

    Article  CAS  PubMed  Google Scholar 

  58. Zawada AM et al (2012) SuperTAG methylation-specific digital karyotyping reveals uremia-induced epigenetic dysregulation of atherosclerosis-related genes. Circ Cardiovasc Genet 5(6):611–620

    Article  PubMed  Google Scholar 

  59. Sapienza C et al (2011) DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 6(1):20–28

    Article  CAS  PubMed  Google Scholar 

  60. Bechtel W et al (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16(5):544–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ko YA et al (2013) Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol 14(10):R108

    Article  PubMed  PubMed Central  Google Scholar 

  62. Burgers WA, Fuks F, Kouzarides T (2002) DNA methyltransferases get connected to chromatin. Trends Genet 18(6):275–277

    Article  CAS  PubMed  Google Scholar 

  63. Napoli C et al (2011) Kidney and heart interactions during cardiorenal syndrome: a molecular and clinical pathogenic framework. Future Cardiol 7(4):485–497

    Article  CAS  PubMed  Google Scholar 

  64. Nistala R et al (2011) Prenatal programming and epigenetics in the genesis of the cardiorenal syndrome. Cardiorenal Med 1(4):243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun BK, Tsao H (2008) Small RNAs in development and disease. J Am Acad Dermatol 59(5):725–737 (quiz 738–740)

    Article  PubMed  Google Scholar 

  66. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282

    Article  CAS  PubMed  Google Scholar 

  68. Khare S, Zhang Q, Ibdah JA (2013) Epigenetics of hepatocellular carcinoma: role of microRNA. World J Gastroenterol 19(33):5439–5445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Aalto AP, Pasquinelli AE (2012) Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol 24(3):333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y et al (2007) MicroRNA: past and present. Front Biosci 12:2316–2329

    Article  CAS  PubMed  Google Scholar 

  72. Zhang C (2008) MicroRNomics: a newly emerging approach for disease biology. Physiol Genomics 33(2):139–147

    Article  PubMed  CAS  Google Scholar 

  73. Zhang C (2009) Novel functions for small RNA molecules. Curr Opin Mol Ther 11(6):641–651

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lorenzen JM, Batkai S, Thum T (2013) Regulation of cardiac and renal ischemia-reperfusion injury by microRNAs. Free Radic Biol Med 64:78–84

    Article  CAS  PubMed  Google Scholar 

  75. Friedman JM, Jones PA (2009) MicroRNAs: critical mediators of differentiation, development and disease. Swiss Med Wkly 139(33–34):466–472

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135(7):1201–1214

    Article  CAS  PubMed  Google Scholar 

  77. Kaikkonen MU, Lam MT, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90(3):430–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gupta SK, Bang C, Thum T (2010) Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet 3(5):484–488

    Article  CAS  PubMed  Google Scholar 

  79. Camussi G et al (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848

    Article  CAS  PubMed  Google Scholar 

  80. Mathivanan S et al (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9(2):197–208

    Article  CAS  PubMed  Google Scholar 

  81. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang Z et al (2012) Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). Proteomics 12(2):329–338

    Article  CAS  PubMed  Google Scholar 

  83. Lazaro-Ibanez E et al (2014) Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate 74(14):1379–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang D, Sun W (2014) Urinary extracellular microvesicles: isolation methods and prospects for urinary proteome. Proteomics 14(16):1922–1932

    Article  CAS  PubMed  Google Scholar 

  85. Vettori S, Gay S, Distler O (2012) Role of MicroRNAs in Fibrosis. Open Rheumatol J 6:130–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lorenzen JM, Thum T (2012) Circulating and urinary microRNAs in kidney disease. Clin J Am Soc Nephrol 7(9):1528–1533

    Article  CAS  PubMed  Google Scholar 

  87. Lorenzen JM et al (2011) Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol 6(7):1540–1546

    Article  CAS  PubMed  Google Scholar 

  88. van Rooij E et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103(48):18255–18260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Tijsen AJ et al (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106(6):1035–1039

    Article  CAS  PubMed  Google Scholar 

  90. Wijnen WJ et al (2014) Cardiomyocyte-specific miRNA-30c over-expression causes dilated cardiomyopathy. PLoS One 9(5):e96290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kato M, Arce L, Natarajan R (2009) MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol 4(7):1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Braunwald E (2013) Heart failure. JACC Heart Fail 1(1):1–20

    Article  PubMed  Google Scholar 

  93. Eulalio A et al (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381

    Article  CAS  PubMed  Google Scholar 

  94. Goren Y et al (2012) Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 14(2):147–154

    Article  CAS  PubMed  Google Scholar 

  95. Corsten MF et al (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3(6):499–506

    Article  PubMed  Google Scholar 

  96. Tian Z et al (2008) MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18(3):404–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ardekani AM, Naeini MM (2010) The role of MicroRNAs in human diseases. Avicenna J Med Biotechnol 2(4):161–179

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li JY et al (2010) Review: The role of microRNAs in kidney disease. Nephrology (Carlton) 15(6):599–608

    Article  CAS  Google Scholar 

  99. Kato M et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104(9):3432–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Krupa A et al (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21(3):438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Godwin JG et al (2010) Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci USA 107(32):14339–14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee CG et al (2014) Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int 86(5):943–953

    Article  CAS  PubMed  Google Scholar 

  103. Saal S, Harvey SJ (2009) MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens 18(4):317–323

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazia Maria Virzì.

Ethics declarations

Conflict of interest

No conflict of interest, financial or otherwise for all authors.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virzì, G.M., Clementi, A., Brocca, A. et al. Epigenetics: a potential key mechanism involved in the pathogenesis of cardiorenal syndromes. J Nephrol 31, 333–341 (2018). https://doi.org/10.1007/s40620-017-0425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-017-0425-7

Keywords

Navigation