Advertisement

Journal of Nephrology

, Volume 30, Issue 5, pp 645–652 | Cite as

Update on the role of bone biopsy in the management of patients with CKD–MBD

  • P. Evenepoel
  • G. J. S. Behets
  • M. R. Laurent
  • P. C. D’Haese
Review

Abstract

Patients with chronic kidney disease (CKD) are at increased risk of fractures. The fracture risk steadily increases along with the progression of renal disease to become several-fold higher in end-stage renal disease (ESRD) patients as compared to age and sex-matched controls. Renal osteodystrophy (ROD) is a heterogeneous group of metabolic bone diseases complicating progressive chronic kidney disease. Bone biomarkers and bone imaging techniques may help to assess bone health and predict fractures in CKD, but do have important inherent limitations. The gold standard for the diagnosis and specific classification of renal osteodystrophy (ROD) remains the (quantitative) histomorphometric analysis of the bone biopsy. By informing on bone turnover and mineralization, a bone biopsy may help guide prevention and treatment of ROD and its consequences. This review aims to present an update on epidemiological and procedural aspects, clinical indications, and histomorphometric analysis of bone biopsies and to define the role of bone biopsy in current CKD–MBD care.

Keywords

Renal osteodystrophy Bone biopsy Fracture 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no funding or conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Coresh J, Selvin E, Stevens LA et al (2007) Prevalence of chronic kidney disease in the United States. JAMA 298(17):2038–2047CrossRefPubMedGoogle Scholar
  2. 2.
    Moe S, Drueke T, Cunningham J et al (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 69(11):1945–1953CrossRefPubMedGoogle Scholar
  3. 3.
    Jadoul M, Albert JM, Akiba T et al (2006) Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int 70(7):1358–1366.CrossRefPubMedGoogle Scholar
  4. 4.
    Ball AM, Gillen DL, Sherrard D et al (2002) Risk of hip fracture among dialysis and renal transplant recipients. JAMA 288(23):3014–3018CrossRefPubMedGoogle Scholar
  5. 5.
    Tentori F, McCullough K, Kilpatrick RD et al (2014) High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 85(1):166–173CrossRefPubMedGoogle Scholar
  6. 6.
    Naylor KL, McArthur E, Leslie WD et al (2014) The three-year incidence of fracture in chronic kidney disease. Kidney Int 86(4):810–818CrossRefPubMedGoogle Scholar
  7. 7.
    Nickolas TL, Stein EM, Dworakowski E et al (2013) Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res 28(8):1811–1820CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Malluche HH, Porter DS, Monier-Faugere MC, Mawad H, Pienkowski D (2012) Differences in bone quality in low- and high-turnover renal osteodystrophy. J Am Soc Nephrol 23(3):525–532CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Miller PD (2008) The role of bone biopsy in patients with chronic renal failure. Clin J Am Soc Nephrol 3(Suppl 3):S140–S150CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wilson LM, Rebholz CM, Jirru E et al (2017) Benefits and harms of osteoporosis medications in patients with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med 166(9):649–658CrossRefPubMedGoogle Scholar
  11. 11.
    Evenepoel P, Bover J, Urena TP (2016) Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int 90(6):1184–1190CrossRefPubMedGoogle Scholar
  12. 12.
    Sprague SM, Bellorin-Font E, Jorgetti V et al (2016) Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis 67(4):559–566CrossRefPubMedGoogle Scholar
  13. 13.
    Malluche HH, Monier-Faugere MC (1994) The role of bone biopsy in the management of patients with renal osteodystrophy. J Am Soc Nephrol 4(9):1631–1642PubMedGoogle Scholar
  14. 14.
    Torres PU, Bover J, Mazzaferro S, de Vernejoul MC, Cohen-Solal M (2014) When, how, and why a bone biopsy should be performed in patients with chronic kidney disease. Semin Nephrol 34(6):612–625CrossRefPubMedGoogle Scholar
  15. 15.
    Hernandez JD, Wesseling K, Pereira R, Gales B, Harrison R, Salusky IB (2008) Technical approach to iliac crest biopsy. Clin J Am Soc Nephrol 3(Suppl 3):S164–S169CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Evenepoel P, D’Haese P, Bacchetta J et al (2017) Bone biopsy practice patterns across Europe: the European renal osteodystrophy initiative-a position paper. Nephrol Dial TransplantGoogle Scholar
  17. 17.
    Amling M, Herden S, Posl M, Hahn M, Ritzel H, Delling G (1996) Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Miner Res 11(1):36–45CrossRefPubMedGoogle Scholar
  18. 18.
    Behets GJ (2005) Lanthanum carbonate and bone. University of Leiden, The NetherlandsGoogle Scholar
  19. 19.
    Sutton-Smith P, Beard H, Fazzalari N (2008) Quantitative backscattered electron imaging of bone in proximal femur fragility fracture and medical illness. J Microsc 229(Pt 1):60–66CrossRefPubMedGoogle Scholar
  20. 20.
    Casanova M, Balmelli A, Carnelli D, Courty D, Schneider P, Muller R (2017) Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. R Soc Open Sci 4(2):160971CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Paschalis EP, Mendelsohn R, Boskey AL (2011) Infrared assessment of bone quality: a review. Clin Orthop Relat Res 469(8):2170–2178CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Campbell GM, Sophocleous A (2014) Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies. Bonekey Rep 3:564CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dierolf M, Menzel A, Thibault P et al (2010) Ptychographic X-ray computed tomography at the nanoscale. Nature 467(7314):436–439CrossRefPubMedGoogle Scholar
  24. 24.
    Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28(1):2–17CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ok E, Asci G, Bayraktaroglu S et al (2016) Reduction of Dialysate Calcium Level Reduces Progression of Coronary Artery Calcification and Improves Low Bone Turnover in Patients on Hemodialysis. J Am Soc Nephrol 27(8):2475–2486CrossRefPubMedGoogle Scholar
  26. 26.
    de Oliveira RA, Barreto FC, Mendes M et al (2015) Peritoneal dialysis per se is a risk factor for sclerostin-associated adynamic bone disease. Kidney Int 87(5):1039–1045CrossRefPubMedGoogle Scholar
  27. 27.
    Ballanti P, Wedard BM, Bonucci E (1996) Frequency of adynamic bone disease and aluminum storage in Italian uraemic patients–retrospective analysis of 1429 iliac crest biopsies. Nephrol Dial Transplant 11(4):663–667CrossRefPubMedGoogle Scholar
  28. 28.
    Malluche HH, Mawad HW, Monier-Faugere MC (2011) Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res 26(6):1368–1376CrossRefPubMedGoogle Scholar
  29. 29.
    Malluche HH, Ritz E, Lange HP et al (1976) Bone histology in incipient and advanced renal failure. Kidney Int 9(4):355–362CrossRefPubMedGoogle Scholar
  30. 30.
    Hamdy NA, Kanis JA, Beneton MN et al (1995) Effect of alfacalcidol on natural course of renal bone disease in mild to moderate renal failure. Br Med J 310(6976):358–363CrossRefGoogle Scholar
  31. 31.
    Coen G, Ballanti P, Bonucci E et al (2002) Renal osteodystrophy in predialysis and hemodialysis patients: comparison of histologic patterns and diagnostic predictivity of intact PTH. Nephron 91(1):103–111CrossRefPubMedGoogle Scholar
  32. 32.
    Lindergard B, Johnell O, Nilsson BE, Wiklund PE (1985) Studies of bone morphology, bone densitometry and laboratory data in patients on maintenance hemodialysis treatment. Nephron 39(2):122–129CrossRefPubMedGoogle Scholar
  33. 33.
    Spasovski GB, Bervoets ARJ, Behets GJS et al (2003) Spectrum of renal bone disease in end-stage renal failure patients not yet on dialysis. Nephrol Dial Transplant 18(6):1159–1166CrossRefPubMedGoogle Scholar
  34. 34.
    Evenepoel P, Behets GJ, Viaene L, D’Haese PC (2017) Bone histomorphometry in de novo renal transplant recipients indicates a further decline in bone resorption 1 year posttransplantation. Kidney Int 91(2):469–476CrossRefPubMedGoogle Scholar
  35. 35.
    Evenepoel P, Cavalier E, D’Haese PC (2017) Biomarkers predicting bone turnover in the setting of CKD. Curr Osteoporos Rep 15(3):178–186CrossRefPubMedGoogle Scholar
  36. 36.
    Ketteler M, Block GA, Evenepoel P et al (2017) Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int 92(1):26–36CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Nephrology 2017

Authors and Affiliations

  1. 1.Department of Immunology and Microbiology, Laboratory of NephrologyKU Leuven-University of LeuvenLeuvenBelgium
  2. 2.Department of Nephrology and Renal TransplantationUniversity Hospitals LeuvenLeuvenBelgium
  3. 3.Department of Biomedical Sciences, Laboratory of PathophysiologyAntwerp UniversityWilrijkBelgium
  4. 4.Centre for Metabolic Bone DiseasesUniversity Hospitals LeuvenLeuvenBelgium
  5. 5.Department of Clinical and Experimental Medicine, Gerontology and Geriatrics SectionKU LeuvenLeuvenBelgium

Personalised recommendations