Journal of Nephrology

, Volume 30, Issue 5, pp 677–687 | Cite as

Osteoporosis, bone mineral density and CKD–MBD: treatment considerations

  • Jordi BoverEmail author
  • Lucía Bailone
  • Víctor López-Báez
  • Silvia Benito
  • Paola Ciceri
  • Andrea Galassi
  • Mario Cozzolino


Osteoporosis and chronic kidney disease (CKD) have both independently important potential impact on bone health. A significant number of patients with CKD stages 3a–5D have been shown to have low bone mineral density (BMD), leading to a strikingly elevated risk of fractures (mainly hip fractures) and higher associated morbidity and mortality. Mechanical properties of bone beyond age and menopausal status are additionally affected by intrinsic uremic factors. Therefore, we review in this article not only general concepts of osteoporosis and related consequences, but also the diagnostic and therapeutic implications of low BMD and bone fractures in CKD, beyond increased vascular calcification. Antiresorptive agents (mainly bisphosphonates) were not previously recommended when the estimated glomerular filtration rate (GFR) was lower than 30 ml/min/1.73 m2. However, post-hoc analysis of large randomized clinical trials found that these drugs (i.e. alendronate, ribandronate, denosumab) had comparable efficacy in improving BMD and reducing fracture risk in individuals (mainly women) with moderate reductions of GFR (mostly CKD stages 3–4). Therefore, at least in the absence of clear abnormalities of CKD-related mineral metabolism disturbances, bone antiresorptive agents (and maybe anabolic agents) that are or will be approved for general osteoporosis may be appropriate for CKD. Nephrologists should probably not ignore any longer fracture risk assessment, especially in patients with additional risk factors for osteoporosis if results will impact treatment decisions. However, although different therapeutic agents have been shown to reduce the risk of fracture in CKD patients with low BMD, specific prospective studies, with or without bone biopsies, in CKD are urgently needed.


Osteoporosis Secondary hyperparathyroidism CKD–MBD Bone mineral density Fractures CKD Bisphosphonates Denosumab Teriparatide 



Dr Jordi Bover belongs to the Spanish National Network of Kidney Research RedinRen (RD06/0016/0001 and RD12/0021/0033) and the Spanish National Biobank network RD09/0076/00064. Dr Jordi Bover also belongs to the Catalan Nephrology Research Group AGAUR 2009 SGR-1116. We thank Mr. Ricardo Pellejero for his invaluable bibliographic assistance.

Compliance with ethical standards

Financial support for this work


Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Reginster J-Y, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38(2):4–9. doi: 10.1016/j.bone.2005.11.024 CrossRefGoogle Scholar
  2. 2.
    Prevention NIH (2001) Consensus development panel on osteoporosis prevention, diagnosis, and therapy. JAMA 285(6):785–795.  10.1001/jama.285.6.785 CrossRefGoogle Scholar
  3. 3.
    Black DM, Rosen CJ (2016) Postmenopausal Osteoporosis. N Engl J Med (Table 1):595–603. doi: 10.1056/NEJMcp1513724 PubMedCentralGoogle Scholar
  4. 4.
    Unnanuntana A (2010) The assessment of fracture risk. J Bone Jt Surg 92(3):743. doi: 10.2106/JBJS.I.00919 CrossRefGoogle Scholar
  5. 5.
    Llach F, Bover J, Brenner BM (eds) (2000) The kidney, 6th edn. WB Sanders Company, ed., PhiladelphiaGoogle Scholar
  6. 6.
    Moe S, Drüeke T, Cunningham J et al (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 69(11):1945–1953. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  7. 7.
    Goldenstein PT, Jamal SA, Moyses RM (2015) Fractures in chronic kidney disease: pursuing the best screening and management. Curr Opin Nephrol Hypertens 24(4):317–323. doi: 10.1097/MNH.0000000000000131 PubMedGoogle Scholar
  8. 8.
    Maravic M, Ostertag A, Torres PU, Cohen-Solal M (2014) Incidence and risk factors for hip fractures in dialysis patients. Osteoporos Int 25(1):159–165. doi: 10.1007/s00198-013-2435-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Jadoul M, Albert JM, Akiba T et al (2006) Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the dialysis outcomes and practice patterns study. Kidney Int 70(7):1358–1366. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  10. 10.
    Tentori F, Mccullough K, Kilpatrick RD et al (2014) High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 85(1):166–173. doi: 10.1038/ki.2013.279.High CrossRefPubMedGoogle Scholar
  11. 11.
    Nickolas TL, McMahon DJ, Shane E (2006) Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 17(11):3223–3232. doi: 10.1681/ASN.2005111194 CrossRefPubMedGoogle Scholar
  12. 12.
    Naylor KL, Garg AX, Zou G et al (2015) Comparison of fracture risk prediction among individuals with reduced and normal kidney function. Clin J Am Soc Nephrol 10(4):646–653. doi: 10.2215/CJN.06040614 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kazama JJ, Iwasaki Y, Fukagawa M (2013) Uremic osteoporosis. Kidney Int Suppl 3(5):446–450. doi: 10.1038/kisup.2013.93 CrossRefGoogle Scholar
  14. 14.
    Dennison E, Mohamed MA, Cooper C (2006) Epidemiology of osteoporosis. Rheum Dis Clin North Am 32(4):617–629. doi: 10.1016/j.rdc.2006.08.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Kanis JA, Borgstrom F, De Laet C et al (2005) Assessment of fracture risk. Osteoporos Int 16(6):581–589. doi: 10.1007/s00198-004-1780-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis 3(3):281–290Google Scholar
  17. 17.
    Cannata-Andía JB, Rodriguez García M, Gómez Alonso C (2013) Osteoporosis and adynamic bone in chronic kidney disease. J Nephrol 26(1):73–80. doi: 10.5301/jn.5000212 CrossRefPubMedGoogle Scholar
  18. 18.
    Diacinti D, Guglielmi G (2010) Vertebral morphometry. Radiol Clin North Am 48(3):561–575. doi: 10.1016/j.rcl.2010.02.018 CrossRefPubMedGoogle Scholar
  19. 19.
    Antonelli M, Einstadter D, Magrey M (2014) Screening and treatment of osteoporosis after hip fracture: comparison of sex and race. J Clin Densitom 17(4):479–483. doi: 10.1016/j.jocd.2014.01.009 CrossRefPubMedGoogle Scholar
  20. 20.
    Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C (2009) Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int 20(10):1633–1650. doi: 10.1007/s00198-009-0920-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Brandenburg VM, D’Haese P, Deck A et al (2016) From skeletal to cardiovascular disease in 12 steps—the evolution of sclerostin as a major player in CKD–MBD. Pediatr Nephrol 31(2):195–206. doi: 10.1007/s00467-015-3069-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang Y, Feng B (2016) Systematic review and meta-analysis for the association of bone mineral density and osteoporosis/osteopenia with vascular calcification in women. Int J Rheum Dis. doi: 10.1111/1756-185X.12842 Google Scholar
  23. 23.
    Torregrosa J-V, Bover J, Cannata Andia J et al (2011) Spanish Society of Nephrology recommendations for controlling mineral and bone disorder in chronic kidney disease patients (S.E.N.-M.B.D.). Nefrologia 31(Suppl 1):3–32. doi: 10.3265/Nefrologia.pre2011.Jan.10816 PubMedGoogle Scholar
  24. 24.
    Kidney Disease: Improving Global Outcomes (KDIGO) (2009) KDIGO Clinical Practice Guideline for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD–MBD). Off J Int Soc Nephrol Kidney Int 76Google Scholar
  25. 25.
    Gorriz JL, Molina P, Cerveron MJ et al (2015) Vascular calcification in patients with nondialysis CKD over 3 years. Clin J Am Soc Nephrol 10(4):654–666. doi: 10.2215/CJN.07450714 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bover J, Evenepoel P, Ureña-Torres P et al (2015) Opponent’s comments. Nephrol Dial Transpl 30(3):357. doi: 10.1093/ndt/gfv021a CrossRefGoogle Scholar
  27. 27.
    Torres PU, Bover J, Mazzaferro S, de Vernejoul MC, Cohen-Solal M (2017) When, how, and why a bone biopsy should be performed in patients with chronic kidney disease. Semin Nephrol 34(6):612–625. doi: 10.1016/j.semnephrol.2014.09.004 CrossRefGoogle Scholar
  28. 28.
    KDIGO (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD–MBD). Kidney Int Suppl. 113:S1–130. doi: 10.1038/ki.2009.188
  29. 29.
    Cozzolino M, Urena-Torres P, Vervloet MG et al (2014) Is chronic kidney disease-mineral bone disorder (CKD–MBD) really a syndrome? Nephrol Dial Transpl 29(10):1815–1820. doi: 10.1093/ndt/gft514 CrossRefGoogle Scholar
  30. 30.
    West SL, Lok CE, Langsetmo L et al (2015) Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res 30(5):913–919. doi: 10.1002/jbmr.2406 CrossRefPubMedGoogle Scholar
  31. 31.
    Yenchek RH, Ix JH, Shlipak MG et al (2012) Bone mineral density and fracture risk in older individuals with CKD. Clin J Am Soc Nephrol 7(7):1130–1136. doi: 10.2215/CJN.12871211 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Iimori S, Mori Y, Akita W et al (2012) Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients-a single-center cohort study. Nephrol Dial Transpl 27(1):345–351. doi: 10.1093/ndt/gfr317 CrossRefGoogle Scholar
  33. 33.
    Aucella F, Brunori G, Dalmartello M et al (2016) Assessment of the geriatric competence and perceived needs of Italian nephrologists: an internet survey. J Nephrol 29(3):385–390. doi: 10.1007/s40620-015-0232-y CrossRefPubMedGoogle Scholar
  34. 34.
    Cosman F, de Beur SJ, LeBoff MS et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381. doi: 10.1007/s00198-014-2794-2 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bolland MJ, Avenell A, Baron JA et al (2010) Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ 341:c3691. doi: 10.1136/bmj.c3691 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bauer DC (2013) calcium supplements and fracture prevention. N Engl J Med 369(16):1537–1543. doi: 10.1056/NEJMcp1210380 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Levey AS, Coresh J (2012) Chronic kidney disease. Lancet 379(9811):165–180. doi: 10.1016/S0140-6736(11)60178-5 CrossRefPubMedGoogle Scholar
  38. 38.
    Eckardt K-U, Coresh J, Devuyst O et al (2013) Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382(9887):158–169. doi: 10.1016/S0140-6736(13)60439-0 CrossRefPubMedGoogle Scholar
  39. 39.
    Chronic kidney disease (2014) Refi ning diagnosis and management Polio eradication: placing health before conflict. Lancet 384(9941):378. doi: 10.1016/S0140-6736(14)61267-8 Google Scholar
  40. 40.
    Hill KM, Martin BR, Wastney ME et al (2013) Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease. Kidney Int 83(5):959–966. doi: 10.1038/ki.2012.403 CrossRefPubMedGoogle Scholar
  41. 41.
    Spiegel DM, Brady K (2012) Calcium balance in normal individuals and in patients with chronic kidney disease on low- and high-calcium diets. Kidney Int 81(11):1116–1122. doi: 10.1038/ki.2011.490 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jr D, La Z, Margery G et al (2006) Calcium plus Vitamin D supplementation and the risk of fractures. N Engl J Med 354(7):669–683. doi: 10.1056/NEJMoa055218 CrossRefGoogle Scholar
  43. 43.
    Agarwal R, Georgianos PI (2016) Con: nutritional vitamin D replacement in chronic kidney disease and end-stage renal disease. Polar views in nephrology. JAMA 706–713. doi: 10.1093/ndt/gfw080
  44. 44.
    Anker SD, von Haehling S (2012) Vitamin D in chronic kidney disease. JAMA 307(7):722. doi: 10.1001/jama.2012.159 CrossRefPubMedGoogle Scholar
  45. 45.
    Goldsmith DJA (2016) Pro: should we correct vitamin D deficiency/insufficiency in chronic kidney disease patients with inactive forms of vitamin D or just treat them with active vitamin D forms?: Table 1. Nephrol Dial Transpl 31(5):698–705. doi: 10.1093/ndt/gfw082 CrossRefGoogle Scholar
  46. 46.
    LeBlanc ES, Zakher B, Daeges M, Pappas M, Chou R (2015) Screening for vitamin D deficiency: a systematic review for the U.S. preventive services task force. Ann Intern Med 162(2):109. doi: 10.7326/M14-1659 CrossRefPubMedGoogle Scholar
  47. 47.
    Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ et al (2016) Monthly high-dose vitamin D treatment for the prevention of functional decline. JAMA Intern Med 176(2):175. doi: 10.1001/jamainternmed.2015.7148 CrossRefPubMedGoogle Scholar
  48. 48.
    Bischoff-Ferrari HA, Willett WC, Orav EJ et al (2012) A pooled analysis of vitamin D Dose requirements for fracture prevention. N Engl J Med 367(1):40–49. doi: 10.1056/NEJMoa1109617 CrossRefPubMedGoogle Scholar
  49. 49.
    Mac-Way F, Azzouz L, Noel C, Lafage-Proust M-H (2014) Osteomalacia induced by vitamin D deficiency in hemodialysis patients: the crucial role of vitamin D correction. J Bone Miner Metab 32(2):215–219. doi: 10.1007/s00774-013-0480-7 CrossRefPubMedGoogle Scholar
  50. 50.
    Hernandez JD, Wesseling K, Boechat MI, Gales B, Salusky IB (2007) Osteomalacia in a hemodialysis patient receiving an active vitamin D sterol. Nat Clin Pract Nephrol 3(4):227–232. doi: 10.1038/ncpneph0443 CrossRefPubMedGoogle Scholar
  51. 51.
    Drake MT, Clarke BL, Khosla S (2008) Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc 83(9):1032–1045.
  52. 52.
    Festuccia F, Jafari MT, Fofi C et al (2017) Safety and efficacy of denosumab in osteoporotic hemodialysed patients. J Nephrol 30(2):271–279. doi: 10.1007/s00198-007-0540-8 CrossRefPubMedGoogle Scholar
  53. 53.
    Toussaint ND, Elder GJ, Kerr PG (2009) Bisphosphonates in chronic kidney disease; balancing potential benefits and adverse effects on bone and soft tissue. Clin J Am Soc Nephrol 4(1):221–233. doi: 10.2215/CJN.02550508 CrossRefPubMedGoogle Scholar
  54. 54.
    Bellido T, Plotkin LI (2011) Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone 49(1):50–55. doi: 10.1016/j.bone.2010.08.008 CrossRefPubMedGoogle Scholar
  55. 55.
    Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24(1):23–57. doi: 10.1007/s00198-012-2074-y CrossRefPubMedGoogle Scholar
  56. 56.
    Compston J, Bowring C, Cooper A et al (2013) Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National Osteoporosis Guideline Group (NOGG) update 2013. Maturitas 75(4):392–396. doi: 10.1016/j.maturitas.2013.05.013 CrossRefPubMedGoogle Scholar
  57. 57.
    Diab DL, Watts NB (2013) Bisphosphonate drug holiday: who, when and how long. Ther Adv Musculoskelet Dis 5(3):107–111. doi: 10.1177/1759720X13477714 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sigua-Rodriguez EA, da Costa Ribeiro R, de Brito ACR, Alvarez-Pinzon N, de Albergaria-Barbosa JR (2014) Bisphosphonate-related osteonecrosis of the jaw: a review of the literature. Int J Dent 2014:192320. doi: 10.1155/2014/192320 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hellstein JW, Adler RA, Edwards B et al (2011) Managing the care of patients receiving antiresorptive therapy for prevention and treatment of osteoporosis. J Am Dent Assoc 142(11):1243–1251. doi: 10.14219/jada.archive.2011.0108 CrossRefPubMedGoogle Scholar
  60. 60.
    Khan AA, Morrison A, Hanley DA et al (2015) Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res 30(1):3–23. doi: 10.1002/jbmr.2405 CrossRefPubMedGoogle Scholar
  61. 61.
    Burr DB, Miller L, Grynpas M et al (2003) Tissue mineralization is increased following 1-year treatment with high doses of bisphosphonates in dogs. Bone 33(6):960–969CrossRefPubMedGoogle Scholar
  62. 62.
    Chapurlat RD, Arlot M, Burt-Pichat B et al (2007) Microcrack frequency and bone remodeling in postmenopausal osteoporotic women on long-term bisphosphonates: a bone biopsy study. J Bone Miner Res 22(10):1502–1509CrossRefPubMedGoogle Scholar
  63. 63.
    Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27(5):687–694CrossRefPubMedGoogle Scholar
  64. 64.
    Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CYC (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90(3):1294–1301CrossRefPubMedGoogle Scholar
  65. 65.
    Armamento-Villareal R, Napoli N, Panwar V, Novack D (2006) Suppressed bone turnover during alendronate therapy for high-turnover osteoporosis. N Engl J Med 355(19):2048–2050CrossRefPubMedGoogle Scholar
  66. 66.
    Ma S, Goh EL, Jin A et al (2017) Long-term effects of bisphosphonate therapy: perforations, microcracks and mechanical properties. Nat Publ Gr (November 2016) 1–10. doi: 10.1038/srep43399
  67. 67.
    Saita Y, Ishijima M, Kaneko K (2015) Atypical femoral fractures and bisphosphonate use: current evidence and clinical implications. Ther Adv Chronic Dis 6(4):185–193. doi: 10.1177/2040622315584114 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Black DM, Kelly MP, Genant HK, Palermo L, Eastell R, Bucci-Rechtweg C, Cauley J, Leung PC, Boonen S, Santora A, de Papp A, Bauer DC, For the FIT, Committees and HPFTS (2010) Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur. N Engl J Med 309:1761–1771. doi: 10.1056/NEJMoa0904327 CrossRefGoogle Scholar
  69. 69.
    Black DM, Schwartz AV, Ensrud KE et al (2006) Effects of continuing or stopping alendronate after 5 years of treatment: The fracture intervention trial long-term extension (flex): a randomized trial. JAMA 296(24):2927–2938. doi: 10.1001/jama.296.24.2927 CrossRefPubMedGoogle Scholar
  70. 70.
    Bone HG (2004) Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 350:1189–1199.  10.1056/NEJMoa030897 CrossRefPubMedGoogle Scholar
  71. 71.
    Whitaker M, Guo J, Ph D, Kehoe T, Benson G (2012) Bisphosphonates for osteoporosis—where do we go. N Engl J MedGoogle Scholar
  72. 72.
    Amerling R, Harbord NB, Pullman J, Feinfeld DA (2010) Bisphosphonate use in chronic kidney disease: association with adynamic bone disease in a bone histology series. Blood Purif 29(3):293–299. doi: 10.1159/000276666 CrossRefPubMedGoogle Scholar
  73. 73.
    Bover J, Urena P, Brandenburg V et al (2014) Adynamic bone disease: from bone to vessels in chronic kidney disease. Semin Nephrol 34(6):626–640. doi: 10.1016/j.semnephrol.2014.09.008 CrossRefPubMedGoogle Scholar
  74. 74.
    Brandenburg VM, Floege J (2008) Adynamic bone disease—bone and beyond. NDT Plus 1(3):135–147. doi: 10.1093/ndtplus/sfn040 PubMedPubMedCentralGoogle Scholar
  75. 75.
    Evenepoel P, Bover J, Ureña Torres P (2016) Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int 90(6):1184–1190. doi: 10.1016/j.kint.2016.06.041 CrossRefPubMedGoogle Scholar
  76. 76.
    Ketteler M, Elder GJ, Evenepoel P et al (2015) Revisiting KDIGO clinical practice guideline on chronic kidney disease-mineral and bone disorder: a commentary from a Kidney Disease: improving global outcomes controversies conference. Kidney Int 87(3):502–528. doi: 10.1038/ki.2014.425 CrossRefPubMedGoogle Scholar
  77. 77.
    Jamal SA, Bauer DC, Ensrud KE et al (2007) Alendronate treatment in women with normal to severely impaired renal function: an analysis of the fracture intervention trial. J Bone Miner Res 22(4):503–508. doi: 10.1359/jbmr.070112 CrossRefPubMedGoogle Scholar
  78. 78.
    Miller PD, Roux C, Boonen S et al (2005) Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the cockcroft and gault method: a pooled analysis of nine. Clin Trials 20(12). doi: 10.1359/JBMR.050817
  79. 79.
    Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG (2010) Effect of alendronate on vascular calcification in CKD stages 3 and 4: a pilot randomized controlled trial. Am J Kidney Dis 56(1):57–68. doi: 10.1053/j.ajkd.2009.12.039 CrossRefPubMedGoogle Scholar
  80. 80.
    Lomashvili KA, Monier-Faugere MC, Wang X, Malluche HH, O’Neill WC (2009) Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure. Kidney Int 75(6):617–625. doi: 10.1038/ki.2008.646 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Beaudoin C, Jean S, Bessette L, Ste-Marie L-G, Moore L, Brown JP (2016) Denosumab compared to other treatments to prevent or treat osteoporosis in individuals at risk of fracture: a systematic review and meta-analysis. Osteoporos Int 27(9):2835–2844. doi: 10.1007/s00198-016-3607-6 CrossRefPubMedGoogle Scholar
  82. 82.
    Samelson EJ, Miller PD, Christiansen C et al (2014) RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res 29(2):450–457. doi: 10.1002/jbmr.2043 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Jamal SA, Ljunggren Ö, Stehman-Breen C et al (2011) Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res 26(8):1829–1835. doi: 10.1002/jbmr.403 CrossRefPubMedGoogle Scholar
  84. 84.
    Aapro M, De Castro G, Cohen E, Deray G, Dooley M (2015) Renal effects of molecular targeted therapies in oncology: a review by the cancer and the kidney. 252–255. doi: 10.1093/annonc/mdv136
  85. 85.
    Block GA, Bone HG, Fang L, Lee E, Padhi D (2012) A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res 27(7):1471–1479. doi: 10.1002/jbmr.1613
  86. 86.
    Farinola N, Kanjanapan Y (2013) Denosumab-induced hypocalcaemia in high bone turnover states of malignancy and secondary hyperparathyroidism from renal failure. Intern Med J 43(11):1243–1246. doi: 10.1111/imj.12283 CrossRefPubMedGoogle Scholar
  87. 87.
    Dave V, Chiang CY, Booth J, Mount PF (2015) Hypocalcemia post denosumab in patients with chronic kidney disease stage 4–5. Am J Nephrol 41(2):129–137.
  88. 88.
    Lambe G, Malvathu R, Thomas HM, Graves A (2015) Hypocalcaemic tetany occurring post a single denosumab dose in a patient with stage 4 chronic kidney disease, followed by calcium- and calcitriol-induced hypercalcaemia. Nephrology 20(8):583–584. doi: 10.1111/nep.12432 CrossRefPubMedGoogle Scholar
  89. 89.
    Hamano T, Nakano C (2016) Is denosmab really effective and safe in the care of CKD–MBD? Clin Calcium 26(9):1309PubMedGoogle Scholar
  90. 90.
    Miller PD, Schwartz EN, Chen P, Misurski DA, Krege JH (2007) Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int 18(1):59–68. doi: 10.1007/s00198-006-0189-8 CrossRefPubMedGoogle Scholar
  91. 91.
    Schena FP, Ayasreh N, Fernandez-Llama P et al (2013) Recombinant PTH associated with hypercalcaemia and renal failure. Clin Kidney J 6(1):93–95. doi: 10.1093/ckj/sfs148 CrossRefGoogle Scholar
  92. 92.
    Leder BZ, Tsai JN, Jiang LA, Lee H (2017) Importance of prompt antiresorptive therapy in postmenopausal women discontinuing teriparatide or denosumab: the Denosumab and teriparatide follow-up study (DATA-follow-up). Bone 98:54–58. doi: 10.1016/j.bone.2017.03.006 CrossRefPubMedGoogle Scholar
  93. 93.
    Watts NB, Aggers D, McCarthy EF et al (2017) Responses to treatment with teriparatide in patients with atypical femur fractures previously treated with bisphosphonates. J Bone Miner Res. doi: 10.1002/jbmr.3081 Google Scholar
  94. 94.
    Nishikawa A, Yoshiki F, Taketsuna M, Kajimoto K, Enomoto H (2016) Safety and effectiveness of daily teriparatide for osteoporosis in patients with severe stages of chronic kidney disease: post hoc analysis of a postmarketing observational study. Clin Interv Aging 11:1653–1659. doi: 10.2147/CIA.S120175 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Giamalis P, Economidou D, Dimitriadis C, Memmos D, Papagianni A, Efstratiadis G (2015) Treatment of adynamic bone disease in a haemodialysis patient with teriparatide. Clin Kidney J 8(2):188–190. doi: 10.1093/ckj/sfv005 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Cejka D, Kodras K, Bader T, Haas M (2010) Treatment of hemodialysis-associated adynamic bone disease with teriparatide (PTH1-34): a pilot study. Kidney Blood Press Res 33(3):221–226. doi: 10.1159/000316708 CrossRefPubMedGoogle Scholar
  97. 97.
    Miller PD, Hattersley G, Riis BJ et al (2016) Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316(7):722–733. doi: 10.1001/jama.2016.11136 CrossRefPubMedGoogle Scholar
  98. 98.
    McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370(5):140101140147009. doi: 10.1056/NEJMoa1305224 CrossRefGoogle Scholar
  99. 99.
    Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543. doi: 10.1056/NEJMoa1607948 CrossRefPubMedGoogle Scholar
  100. 100.
    Bandeira L, Lewiecki EM, Bilezikian JP (2017) Romosozumab for the treatment of osteoporosis. Expert Opin Biol Ther 17(2):255–263. doi: 10.1080/14712598.2017.1280455 CrossRefPubMedGoogle Scholar
  101. 101.
    McClung MR (2017) Clinical utility of anti-sclerostin antibodies. Bone. doi: 10.1016/j.bone.2016.12.012 Google Scholar
  102. 102.
    Moe SM, Chen NX, Newman CL et al (2015) Anti—sclerostin antibody treatment in a rat model of progressive renal osteodystrophy. J Bone Miner Res 30(3):499–509. doi: 10.1002/jbmr.2372
  103. 103.
    Eastell R (2005) Role of oestrogen in the regulation of bone turnover at the menarche. J Endocrinol 185(2):223–234. doi: 10.1677/joe.1.06059 CrossRefPubMedGoogle Scholar
  104. 104.
    Anantharaman P, Schmidt RJ (2007) Sexual function in chronic kidney disease. Adv Chronic Kidney Dis 14(2):119–125. doi: 10.1053/j.ackd.2007.01.002 CrossRefPubMedGoogle Scholar
  105. 105.
    Haghverdi F, Farbodara T, Mortaji S, Soltani P, Saidi N (2014) Effect of raloxifene on parathyroid hormone in osteopenic and osteoporotic postmenopausal women with chronic kidney disease stage 5. Iran J Kidney Dis 8(6):461–466PubMedGoogle Scholar
  106. 106.
    Hernández E, Valera R, Alonzo E et al (2003) Effects of raloxifene on bone metabolism and serum lipids in postmenopausal women on chronic hemodialysis. Kidney Int 63(6):2269–2274. doi: 10.1046/j.1523-1755.2003.00005.x CrossRefPubMedGoogle Scholar
  107. 107.
    Ishani A, Blackwell T, Jamal SA, Cummings SR, Ensrud KE, Investigators for the M (2008) The effect of raloxifene treatment in postmenopausal women with CKD. J Am Soc Nephrol 19(7):1430–1438. doi: 10.1681/ASN.2007050555 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Nephrology 2017

Authors and Affiliations

  • Jordi Bover
    • 1
    Email author
  • Lucía Bailone
    • 1
  • Víctor López-Báez
    • 1
  • Silvia Benito
    • 1
  • Paola Ciceri
    • 2
  • Andrea Galassi
    • 2
  • Mario Cozzolino
    • 2
  1. 1.Fundació Puigvert, Department of NephrologyIIB Sant PauBarcelonaSpain
  2. 2.Laboratory of Experimental Nephrology, Renal Division, San Paolo HospitalDiSS University of MilanMilanItaly

Personalised recommendations