Journal of Nephrology

, Volume 30, Issue 5, pp 629–634 | Cite as

Adynamic bone disease is a predominant bone pattern in early stages of chronic kidney disease

  • Ziad MassyEmail author
  • Tilman Drueke


Chronic kidney disease (CKD) is complicated by disturbances of mineral and bone metabolism which start early in the course of the disease. It has long been assumed that high turnover bone lesions induced by secondary hyperparathyroidism are the predominant type of renal osteodystrophy from the start. However, there is increasing evidence in favor of the view that in early CKD stages low bone turnover is prevailing, with adynamic bone disease being the predominant form. Since serum parathyroid hormone levels increase progressively early on, and the most probable explanation is resistance to the skeletal action of this hormone. An early inhibition of the Wnt pathway with an increase in sclerostin and other inhibitors of Wnt signaling may be involved. Finally, a variety of other uremic toxins such as indoxyl sulfate and phosphate may play an important role in the pathogenesis of the low turnover bone disease observed in early stages of CKD. The optimal strategies to prevent and to treat adynamic bone disease in incipient CKD yet need to be defined. Targeting uremic toxins such as sclerostin, phosphate, and indoxyl sulfate may be relevant.


Renal osteodystrophy Adynamic bone disease Early CKD PTH FGF23 Uremic toxins Indoxyl sulfate 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Kidney Disease-Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl:S1–S130Google Scholar
  2. 2.
    National Kidney Foundation (2003) K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42:S1–201Google Scholar
  3. 3.
    Barreto FC, Barreto DV, Moyses RM, Neves KR, Canziani ME, Draibe SA, Jorgetti V, Carvalho AB (2008) K/DOQI-recommended intact PTH levels do not prevent low-turnover bone disease in hemodialysis patients. Kidney Int 73:771–777CrossRefPubMedGoogle Scholar
  4. 4.
    Malluche HH, Mawad HW, Monier-Faugere MC (2011) Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res 26:1368–1376CrossRefPubMedGoogle Scholar
  5. 5.
    Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, D’Haese PC, Drueke TB, Du H, Manley T et al (2016) Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis 67:559–566CrossRefPubMedGoogle Scholar
  6. 6.
    Sherrard DJ, Hercz G, Pei Y, Maloney NA, Greenwood C, Manuel A, Saiphoo C, Fenton SS, Segre GV (1993) The spectrum of bone disease in end-stage renal failure—an evolving disorder. Kidney Int 43:436–442CrossRefPubMedGoogle Scholar
  7. 7.
    Coen G, Mazzaferro S, Ballanti P, Sardella D, Chicca S, Manni M, Bonucci E, Taggi F (1996) Renal bone disease in 76 patients with varying degrees of predialysis chronic renal failure: a cross-sectional study. Nephrol Dial Transpl 11:813–819CrossRefGoogle Scholar
  8. 8.
    Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J et al (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–1378CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Barreto FC, Barreto DV, FernandesCanziani ME, Tomiyama C, Higa A, Mozar A, Glorieux G, Vanholder R, Massy ZA, BarbosaDeCarvalho A (2014) Association between indoxyl sulfate and bone histomorphometry in pre-dialysis chronic kidney disease patients. J Braz Nefrol 36:289–296Google Scholar
  10. 10.
    Dhayat NA, Ackermann D, Pruijm M, Ponte B, Ehret G, Guessous I, Leichtle AB, Paccaud F, Mohaupt M, Fiedler GM et al (2016) Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function. Kidney Int 90:648–657CrossRefPubMedGoogle Scholar
  11. 11.
    Lafage-Proust MH, Combe C, Barthe N, Aparicio M (1999) Bone mass and dynamic parathyroid function according to bone histology in nondialyzed uremic patients after long-term protein and phosphorus restriction. J Clin Endocrinol Metab 84:512–519CrossRefPubMedGoogle Scholar
  12. 12.
    Graciolli FG, Neves KR, Barreto F, Barreto DV, Dos Reis LM, Canziani ME, Sabbagh Y, Carvalho AB, Jorgetti V, Elias RM, Schiavi S, Moysés RM (2017) The complexity of chronic kidney disease-mineral and bone disorder across stages of chronic kidney disease. Kidney Int. doi: 10.1016/j.kint.2016.12.029 PubMedGoogle Scholar
  13. 13.
    Drueke TB, Massy ZA (2016) Changing bone patterns with progression of chronic kidney disease. Kidney Int 89:289–302CrossRefPubMedGoogle Scholar
  14. 14.
    Cosman F, Morgan DC, Nieves JW, Shen V, Luckey MM, Dempster DW, Lindsay R, Parisien M (1997) Resistance to bone resorbing effects of PTH in black women. J Bone Miner Res 12:958–966CrossRefPubMedGoogle Scholar
  15. 15.
    Yan L, Schoenmakers I, Zhou B, Jarjou LM, Smith E, Nigdikar S, Goldberg GR, Prentice A (2009) Ethnic differences in parathyroid hormone secretion and mineral metabolism in response to oral phosphate administration. Bone 45:238–245CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fang Y, Ginsberg C, Seifert M, Agapova O, Sugatani T, Register TC, Freedman BI, Monier-Faugere MC, Malluche H, Hruska KA (2014) CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol 25:1760–1773CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sabbagh Y, Graciolli FG, O’Brien S, Tang W, dos Reis LM, Ryan S, Phillips L, Boulanger J, Song W, Bracken C et al (2012) Repression of osteocyte Wnt/beta-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res 27:1757–1772CrossRefPubMedGoogle Scholar
  18. 18.
    Moe SM, Chen NX, Newman CL, Organ JM, Kneissel M, Kramer I, Gattone VH 2nd, Allen MR (2015) Anti-sclerostin antibody treatment in a rat model of progressive renal osteodystrophy. J Bone Miner Res 30:499–509CrossRefPubMedGoogle Scholar
  19. 19.
    Bover J, Jara A, Trinidad P, Rodriguez M, Felsenfeld AJ (1999) Dynamics of skeletal resistance to parathyroid hormone in the rat: effect of renal failure and dietary phosphorus. Bone 25:279–285CrossRefPubMedGoogle Scholar
  20. 20.
    Ferreira JC, Ferrari GO, Neves KR, Cavallari RT, Dominguez WV, Dos Reis LM, Graciolli FG, Oliveira EC, Liu S, Sabbagh Y et al (2013) Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney disease—role of sclerostin? PLoS One 8:e79721CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nikolov IG, Joki N, Nguyen-Khoa T, Guerrera IC, Maizel J, Benchitrit J, Machado dos Reis L, Edelman A, Lacour B, Jorgetti V et al (2012) Lanthanum carbonate, like sevelamer-HCl, retards the progression of vascular calcification and atherosclerosis in uremic apolipoprotein E-deficient mice. Nephrol Dial Transpl 27:505–513CrossRefGoogle Scholar
  22. 22.
    Tanaka H, Iwasaki Y, Yamato H, Mori Y, Komaba H, Watanabe H, Maruyama T, Fukagawa M (2013) p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone 56:347–354CrossRefPubMedGoogle Scholar
  23. 23.
    Nii-Kono T, Iwasaki Y, Uchida M, Fujieda A, Hosokawa A, Motojima M, Yamato H, Kurokawa K, Fukagawa M (2007) Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int 71:738–743CrossRefPubMedGoogle Scholar
  24. 24.
    Mozar A, Louvet L, Godin C, Mentaverri R, Brazier M, Kamel S, Massy ZA (2012) Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol Dial Transpl 27:2176–2181CrossRefGoogle Scholar
  25. 25.
    Iwasaki Y, Yamato H, Nii-Kono T, Fujieda A, Uchida M, Hosokawa A, Motojima M, Fukagawa M (2006) Administration of oral charcoal adsorbent (AST-120) suppresses low-turnover bone progression in uraemic rats. Nephrol Dial Transpl 21:2768–2774CrossRefGoogle Scholar
  26. 26.
    Iwasaki Y, Kazama JJ, Yamato H, Shimoda H, Fukagawa M (2013) Accumulated uremic toxins attenuate bone mechanical properties in rats with chronic kidney disease. Bone 57:477–483CrossRefPubMedGoogle Scholar
  27. 27.
    Hruska KA, Sugatani T, Agapova O, Fang Y (2017) The chronic kidney disease—mineral bone disorder (CKD-MBD): advances in pathophysiology. Bone. doi: 10.1016/j.bone.2017.01.023 Google Scholar
  28. 28.
    Metzinger-Le Meuth V, Burtey S, Maitrias P, Massy ZA, Metzinger L (2017) microRNAs in the pathophysiology of CKD-MBD: Biomarkers and innovative drugs. Biochim Biophys Acta 1863:337–345CrossRefPubMedGoogle Scholar
  29. 29.
    Prisby R, Guignandon A, Vanden-Bossche A, Mac-Way F, Linossier MT, Thomas M, Laroche N, Malaval L, Langer M, Peter ZA et al (2011) Intermittent PTH(1–84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone-forming sites. J Bone Miner Res 26:2583–2596CrossRefPubMedGoogle Scholar
  30. 30.
    Sun CY, Chang SC, Wu MS (2012) Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int 81:640–650CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Towler DA (2011) Skeletal anabolism, PTH, and the bone-vascular axis. J Bone Miner Res 26:2579–2582CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yang K, Wang C, Nie L, Zhao X, Gu J, Guan X, Wang S, Xiao T, Xu X, He T et al (2015) Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. J Am Soc Nephrol 26:2434–2446CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Carvalho C, Alves CM, Frazao JM (2016) The role of bone biopsy for the diagnosis of renal osteodystrophy: a short overview and future perspectives. J Nephrol 29:617–626CrossRefPubMedGoogle Scholar
  34. 34.
    Ketteler M, Elder GJ, Evenepoel P, Ix JH, Jamal SA, Lafage-Proust MH, Shroff R, Thadhani RI, Tonelli MA, Kasiske BL et al (2015) Revisiting KDIGO clinical practice guideline on chronic kidney disease-mineral and bone disorder: a commentary from a kidney disease: improving global outcomes controversies conference. Kidney Int 87:502–528CrossRefPubMedGoogle Scholar
  35. 35.
    Gallieni M, De Luca N, Santoro D, Meneghel G, Formica M, Grandaliano G, Pizzarelli F, Cossu M, Segoloni G, Quintaliani G et al (2016) Management of CKD-MBD in non-dialysis patients under regular nephrology care: a prospective multicenter study. J Nephrol 29:71–78CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Nephrology 2017

Authors and Affiliations

  1. 1.Division of Nephrology, Ambroise Paré Hospital, APHPVersailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ)Boulogne Billancourt and Villejuif CedexFrance
  2. 2.Inserm U-1018, Team 5Paris-Sud University (UPS) and Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ)VillejuifFrance

Personalised recommendations