Skip to main content

Advertisement

Log in

Peritoneal dialysate effluent and serum CA125 concentrations in stable peritoneal dialysis patients

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Introduction

CA125 in peritoneal dialysis (PD) effluent dialysate has been used as a surrogate biomarker for the health of the peritoneum in PD patients. However CA125 is synthesised by epithelial cells and as such is not specific for the peritoneum, and most studies have only measured peritoneal CA125, without serum CA125 values. As such we wished to determine the factors which influenced PD effluent CA125 in a large contemporaneous cohort.

Methods

We measured dialysate effluent CA125 in PD patients attending for routine assessment of peritoneal membrane function with a peritoneal equilibration test (PET), with corresponding serum CA125.

Results

Serum and dialysate CA125 were measured in 205 PD patients; 59.0 ± 16.8 years, median PD treatment 3 (2–20) months, 59 % male, 42.4 % diabetic, with 31.2 % treated by continuous ambulatory peritoneal dialysis, 22 % by automated overnight peritoneal dialysis cycler (APD) and 46.8 % by APD with a day time exchange. The median serum CA125 was 21 (13–38) U/ml, with an effluent 4 h PD PET effluent of 20 (11.5–36.5) U/ml. PET PD effluent dialysate was associated with PET dialysate total protein (β 12.9, p < 0.001), serum CA125 (β 0.109, p = 0.002), residual renal function (β 0.53, p = 0.018) and age (β 0.145, p = 0.042) and negatively with the number of PD cycles/day (β −2.19, p = 0.001). There was no association with prior peritonitis episodes.

Conclusion

PD effluent CA125 concentrations were associated with peritoneal protein losses and increased by the usage of higher glucose dialysates to compensate for loss of residual renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Koomen GCM, Betjes MGH, Zemel D, Krediet RT, Hoek FJ (1994) Dialysate cancer antigen (CA) 125 is a reflection of the peritoneal mesothelial mass in CAPD patients. Perit Dial Int 14:132–161

    CAS  PubMed  Google Scholar 

  2. Visser CE, Brouwer-Steenbergen JJ, Betjes MG, Koomen GC, Beeleen RH, Krediet RT (1995) Cancer antigen 125: a bulk marker for the mesothelial mass in stable peritoneal dialysis patients. Nephrol Dial Transpl 10:64–69

    CAS  Google Scholar 

  3. Pannekeet MM, Zemel D, Koomen GC, Struijik DG, Krediet RT (1995) Dialysate markers of peritoneal tissue during peritonitis and in stable CAPD. Perit Dial Int 15:217–225

    CAS  PubMed  Google Scholar 

  4. Elsurer R, Afsar B, Sezer S, Ozdemir FN (2010) Peritoneal cells at admission: do they have prognostic significance in peritonitis? Ren Fail 32(3):335–342

    Article  PubMed  Google Scholar 

  5. Panorchan K, Davenport A (2014) Diagnostic and prognostic role of peritoneal CA 125 in peritoneal dialysis patients presenting with acute peritonitis. BMC Nephrol 15:149

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sampimon DE, Korte MR, Barreto DL, Vlijm A, de Waart R, Struijk DG, Krediet RT (2010) Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study. Perit Dial Int 30(2):163–169

    Article  CAS  PubMed  Google Scholar 

  7. Habib AM, Preston E, Davenport A (2010) Risk factors for developing encapsulating peritoneal sclerosis in the icodextrin era of peritoneal dialysis prescription. Nephrol Dial Transpl 25(5):1633–1638

    Article  CAS  Google Scholar 

  8. Jones S, Holmes CJ, Krediet RT, Mackenzie R, Faict D, Tranaeus A, Williams JD, Coles GA, Topley N (2001) Bicarbonate/Lactate Study Group. Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney Int 59(4):1529–1538

    Article  CAS  PubMed  Google Scholar 

  9. Rajakaruna G, Caplin B, Davenport A (2015) Peritoneal protein clearance rather than faster transport status determines outcomes in peritoneal dialysis patients. Perit Dial Int 35(2):216–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Twardowski ZJ (1990) PET—a simpler approach for determining prescriptions for adequate dialysis therapy. Adv Perit Dial 6:186–191

    CAS  PubMed  Google Scholar 

  11. Persaud J, Thomas M, Davenport A (2014) Indirect ion selective electrode methods potentially overestimate peritoneal dialysate sodium losses. Ther Apher Dial 18(4):321–325

    Article  CAS  PubMed  Google Scholar 

  12. Booth J, Pinney J, Davenport A (2010) Changes in red blood cell size and red cell fragmentation during haemodialysis. Int J Artif Organs 33(12):900–905

    CAS  PubMed  Google Scholar 

  13. Oates T, Pinney JH, Davenport A (2011) Haemodiafiltration versus high-flux haemodialysis: effects on phosphate control and erythropoietin response. Am J Nephrol 33(1):70–75

    Article  CAS  PubMed  Google Scholar 

  14. Randerson DH, Chapman GV, Farell PC (1981) Amino acid and dietary status in CAPD patients. In: Atkins RC, Farell PC, Thomson N (eds) Peritoneal dialysis. Churchill-Livingstone, Edinburgh, pp 180–191

    Google Scholar 

  15. Davenport A, Willicombe M (2009) Comparison of fluid status in patients treated by different modalities of peritoneal dialysis using multi-frequency bioimpedance. Int J Artif Organs 32(11):779–786

    CAS  PubMed  Google Scholar 

  16. Davenport A, Willicombe M (2009) Hydration status does not influence peritoneal equilibration test ultrafiltration volumes. Clin J Am Soc Nephrol 4(7):1207–1212

    Article  PubMed  PubMed Central  Google Scholar 

  17. Davies SJ, Phillips L, Naish PF, Russell GI (2002) Quantifying comorbidity in peritoneal dialysis patients and its relationship to other predictors of survival. Nephrol Dial Transpl 17:1085–1092

    Article  Google Scholar 

  18. Fusshöller A, Grabensee B, Plum J (2003) Effluent CA 125 concentration in chronic peritoneal dialysis patients: influence of PD duration, peritoneal transport and PD regimen. Kidney Blood Press Res 26(2):118–122

    Article  PubMed  Google Scholar 

  19. Li FK, Davenport A, Robson RL, Loetscher P, Rothlein R, Williams JD, Topley N (1998) Leukocyte migration across human peritoneal mesothelial cells is dependent on directed chemokine secretion and ICAM-1 expression. Kidney Int 54(6):2170–2183

    Article  CAS  PubMed  Google Scholar 

  20. Do JY, Kim YL, Park JW, Chang KA, Lee SH, Ryu DH, Kim CD, Park SH, Yoon KW (2008) The association between the vascular endothelial growth factor-to-cancer antigen 125 ratio in peritoneal dialysis effluent and the epithelial-to-mesenchymal transition in continuous ambulatory peritoneal dialysis. Perit Dial Int 28(Suppl 3):S101–S106

    PubMed  Google Scholar 

  21. Parikova A, Zweers MM, Struijk DG, Krediet RT (2003) Peritoneal effluent markers of inflammation in patients treated with icodextrin-based and glucose-based dialysis solutions. Adv Perit Dial 19:186–190

    PubMed  Google Scholar 

  22. Heaf JG (2012) Peritoneal transport: getting more complicated. Nephrol Dial Transpl 27(12):4248–4251

    Article  Google Scholar 

  23. Rodrigues A, Martins M, Santos MJ, Fonseca I, Oliveira JC, Cabrita A, Melo e Castro J, Krediet RT (2004) Evaluation of effluent markers cancer antigen 125, vascular endothelial growth factor, and interleukin-6: relationship with peritoneal transport. Adv Perit Dial 20:8–12

    CAS  PubMed  Google Scholar 

  24. Struijk DG, Krediet RT, Koomen GC, Boeschoten EW, Hoek FJ, Arisz L (1994) A prospective study of peritoneal transport in CAPD patients. Kidney Int 45(6):1739–1744

    Article  CAS  PubMed  Google Scholar 

  25. Zhang R, Ren YP (2012) Protein-energy wasting and peritoneal function in elderly peritoneal dialysis patients. Clin Exp Nephrol 16(5):792–798

    Article  CAS  PubMed  Google Scholar 

  26. Fürstenberg A, Davenport A (2011) Assessment of body composition in peritoneal dialysis patients using bioelectrical impedance and dual-energy X-ray absorptiometry. Am J Nephrol 33(2):150–156

    Article  PubMed  Google Scholar 

  27. Davies SJ, Davenport A (2014) The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int 86(3):489–496

    Article  PubMed  Google Scholar 

  28. Krediet RT, Zuyderhoudt FM, Boeschoten EW, Arisz L (1987) Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 17(1):43–52

    Article  CAS  PubMed  Google Scholar 

  29. Douma CE, de Waart DR, Struijk DG, Krediet RT (1998) Are phospholipase A2 and nitric oxide involved in the alterations in peritoneal transport during CAPD peritonitis? J Lab Clin Med 132(4):329–340

    Article  CAS  PubMed  Google Scholar 

  30. Wang HY, Tian YF, Chien CC, Kan WC, Liao PC, Wu HY, Su SB, Lin CY (2010) Differential proteomic characterization between normal peritoneal fluid and diabetic peritoneal dialysate. Nephrol Dial Transpl 25(6):1955–1963

    Article  CAS  Google Scholar 

  31. Fan S, Sayed RH, Davenport A (2012) Extracellular volume expansion in peritoneal dialysis patients. Int J Artif Organs 35(5):338–345

    Article  CAS  PubMed  Google Scholar 

  32. McCafferty K, Fan S, Davenport A (2014) Extracellular volume expansion, measured by multifrequency bioimpedance, does not help preserve residual renal function in peritoneal dialysis patients. Kidney Int 85(1):151–157

    Article  PubMed  Google Scholar 

  33. Sitter T, Sauter M (2005) Impact of glucose in peritoneal dialysis: saint or sinner? Perit Dial Int 25(5):415–4251

    CAS  PubMed  Google Scholar 

  34. Nossov V, Amneus M, Su F, Lang J, Janco JM, Reddy ST, Farias-Eisner R (2008) The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? Am J Obstet Gynecol 199(3):215–223

    Article  CAS  PubMed  Google Scholar 

  35. Camci C, Büyükberber S, Tarakçioğlu M, Adam SM, Camci C, Türk HM, Büyükberber N, Balat O (2002) The effect of continuous ambulatory peritoneal dialysis on serum CA-125 levels. Eur J Gynaecol Oncol 23(5):472–474

    CAS  PubMed  Google Scholar 

  36. Yu X, Xu X, Ye Z (2007) Effect of renal function and hemodialysis on the serum tumor markers in patients with chronic kidney disease. Front Med China 1(3):308–311

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Davenport.

Ethics declarations

Conflict of interest

Neither author has any conflict of interest.

Ethical standard

This retrospective audit complied with both the local Royal Free Hospital Research and Development office and the UK NHS guidelines for clinical audit and service development, available at http://www.hra.nhs.uk/documents/2013/09/defining-research.pdf, and http://www.gov.uk/government/publications/health-research-ethics-committees-governance-arrangements.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redahan, L., Davenport, A. Peritoneal dialysate effluent and serum CA125 concentrations in stable peritoneal dialysis patients. J Nephrol 29, 427–434 (2016). https://doi.org/10.1007/s40620-015-0250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-015-0250-9

Keywords

Navigation