Journal of Nephrology

, Volume 29, Issue 2, pp 203–209 | Cite as

C3 glomerulonephritis and autoimmune disease: more than a fortuitous association?

  • Mariam P. Alexander
  • Fernando C. Fervenza
  • An S. De Vriese
  • Richard J. H. Smith
  • Samih H. Nasr
  • Lynn D. Cornell
  • Loren P. Herrera Hernandez
  • Yuzhou Zhang
  • Sanjeev Sethi
Original Article


C3 glomerulonephritis (C3GN) results from genetic or acquired dysregulation of the alternative complement pathway. A subset of patients may have clinical and biochemical characteristics compatible with an autoimmune disorder. We studied a cohort of 85 patients with confirmed C3GN (2007–2014), of which ten patients (3 male, 7 female; mean age 38.5 years) had an associated autoimmune disorder. All patients had abnormal ANA titers, 6 also had positive ds-DNA titers. At the time of presentation with C3GN, all 7 female patients had autoimmune-related presentations. Of the 3 male patients, only 1 patient had autoimmune-related presentations. Kidney biopsy showed predominantly mesangial proliferative or membranoproliferative glomerulonephritis. In 5 patients, the alternative pathway was evaluated. All had allele variants/polymorphisms associated with C3GN. One patient was also positive for C3Nefs. Treatment varied form conservative management to the use of prednisone alone or with cytotoxic therapy. Mean serum creatinine decreased from 2.0 to 1.4 mg/dL while proteinuria decreased from 2300 to 994 mg/24 h in 8 patients with follow-up. The study highlights the association between C3GN and autoimmune disorders, particularly in female patients. The study suggests that an autoimmune milieu may act as a trigger for the development of C3GN in genetically susceptible patients. Short-term prognosis of C3GN associated with autoimmune disorders appears excellent.


C3 glomerulopathy C3 glomerulonephritis Autoimmune disease ANA ds-DNA 


Conflict of interest


Ethical approval

This study does not contain any studies with human participants performed by any of the participants.

Informed consent

For this type of study formal consent is not required. The Institutional Review Board at the Mayo Clinic, Rochester, approved the study.


  1. 1.
    Servais A, Fremeaux-Bacchi V, Lequintrec M et al (2007) Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome. J Med Genet 44:193–199CrossRefPubMedGoogle Scholar
  2. 2.
    Sethi S, Fervenza FC, Zhang Y et al (2012) C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney Int 82:465–473CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pickering MC, D’Agati VD, Nester CM et al (2013) C3 glomerulopathy: consensus report. Kidney Int 84:1079–1089CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sethi S, Fervenza FC, Zhang Y et al (2011) Proliferative glomerulonephritis secondary to dysfunction of the alternative pathway of complement. Clin J Am Soc Nephrol 6:1009–1017CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sethi S, Fervenza FC (2012) Membranoproliferative glomerulonephritis: a new look at an old entity. N Engl J Med 366:1119–1131CrossRefPubMedGoogle Scholar
  6. 6.
    Martínez-Barricarte R, Heurich M, Valdes-Cañedo F et al (2010) Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest 120:3702–3712CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Abrera-Abeleda MA, Nishimura C, Frees K et al (2011) Allelic variants of complement genes associated with dense deposit disease. J Am Soc Nephrol 22:1551–1559CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang Y, Meyer NC, Wang K et al (2012) Causes of alternative pathway dysregulation in dense deposit disease. Clin J Am Soc Nephrol 7:265–274CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Servais A, Noel L-H, Roumenina LT et al (2012) Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int 82:454–464CrossRefPubMedGoogle Scholar
  10. 10.
    Pickering M, Cook HT (2011) Complement and glomerular disease: new insights. Curr Opin Nephrol Hypertens 20:271–277CrossRefPubMedGoogle Scholar
  11. 11.
    Ozaltin F, Li B, Rauhauser A et al (2013) DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J Am Soc Nephrol 24:377–384CrossRefPubMedGoogle Scholar
  12. 12.
    Józsi M, Zipfel PF (2008) Factor H family proteins and human diseases. Trends Immunol 29:380–387CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Y, Nester CM, Martin B et al (2014) Defining the complement biomarker profile of C3 glomerulopathy. Clin J Am Soc Nephrol 9:1876–1882CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zand L, Kattah A, Fervenza FC et al (2013) C3 glomerulonephritis associated with monoclonal gammopathy: a case series. Am J Kidney Dis 62:506–514CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sethi S, Rajkumar SV (2013) Monoclonal gammopathy-associated proliferative glomerulonephritis. Mayo Clin Proc 88:1284–1293CrossRefPubMedGoogle Scholar
  16. 16.
    Sethi S, Fervenza FC, Zhang Y et al (2013) Atypical postinfectious glomerulonephritis is associated with abnormalities in the alternative pathway of complement. Kidney Int 83:293–299CrossRefPubMedGoogle Scholar
  17. 17.
    Maga TK, Meyer NC, Belsha C et al (2011) A novel deletion in the RCA gene cluster causes atypical hemolytic uremic syndrome. Nephrol Dial Transplant 26:739–741CrossRefPubMedGoogle Scholar
  18. 18.
    Zand L, Fervenza F, Nasr S et al (2014) Membranoproliferative glomerulonephritis associated with autoimmune diseases. J Nephrol 27:165–171CrossRefPubMedGoogle Scholar
  19. 19.
    Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740PubMedGoogle Scholar
  20. 20.
    Westland R, Bodria M, Carrea A et al (2014) Phenotypic expansion of DGKE-associated diseases. J Am Soc Nephrol 25:1408–1414CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lemaire M, Fremeaux-Bacchi V, Schaefer F et al (2013) Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet 45:531–536CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wichainun R, Kasitanon N, Wangkaew S et al (2013) Sensitivity and specificity of ANA and anti-dsDNA in the diagnosis of systemic lupus erythematosus: a comparison using control sera obtained from healthy individuals and patients with multiple medical problems. Asian Pac J Allergy Immunol 31:292–298CrossRefPubMedGoogle Scholar
  23. 23.
    Arbuckle MR, McClain MT, Rubertone MV et al (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349:1526–1533CrossRefPubMedGoogle Scholar
  24. 24.
    Nasr SH, Galgano SJ, Markowitz GS et al (2006) Immunofluorescence on pronase-digested paraffin sections: a valuable salvage technique for renal biopsies. Kidney Int 70:2148–2151CrossRefPubMedGoogle Scholar
  25. 25.
    Larsen CP, Ambuzs JM, Bonsib SM et al (2014) Membranous-like glomerulopathy with masked IgG kappa deposits. Kidney Int 86:154–161CrossRefPubMedGoogle Scholar
  26. 26.
    Gaulton GN, Greene MI (1986) idiotypic mimicry of biological receptors. Annu Rev Immunol 4:253–276CrossRefPubMedGoogle Scholar
  27. 27.
    Mevorach D, Mascarenhas JO, Gershov D et al (1998) Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188:2313–2320CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lech M, Anders H-J (2013) The pathogenesis of lupus nephritis. J Am Soc Nephrol 24:1357–1366CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Knight JS, Kaplan MJ (2012) Lupus neutrophils: ‘NET’ gain in understanding lupus pathogenesis. Curr Opin Rheumatol 24(441–450):4. doi: 10.1097/BOR.1090b1013e3283546703 Google Scholar
  30. 30.
    Dorner T (2012) SLE in 2011: deciphering the role of NETs and networks in SLE. Nat Rev Rheumatol 8:68–70PubMedGoogle Scholar
  31. 31.
    Radic M, Marion T (2013) Neutrophil extracellular chromatin traps connect innate immune response to autoimmunity. Semin Immunopathol 35:465–480CrossRefPubMedGoogle Scholar
  32. 32.
    Sano Y, Nishimukai H, Kitamura H et al (1981) Hereditary deficiency of the third component of complement in two sisters with systemic lupus erythematosus-like symptoms. Arthritis Rheum 24:1255–1260CrossRefPubMedGoogle Scholar
  33. 33.
    Walport MJ, Davies KA, Botto M et al (1994) C3 nephritic factor and SLE: report of four cases and review of the literature. QJM 87:609–615PubMedGoogle Scholar
  34. 34.
    Carroll MC (2004) A protective role for innate immunity in systemic lupus erythematosus. Nat Rev Immunol 4:825–831CrossRefPubMedGoogle Scholar
  35. 35.
    Nozal P, Garrido S, Martínez-Ara J et al (2015) Case report: lupus nephritis with autoantibodies to complement alternative pathway proteins and C3 gene mutation. BMC Nephrol 16:40CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Nephrology 2015

Authors and Affiliations

  • Mariam P. Alexander
    • 1
  • Fernando C. Fervenza
    • 2
  • An S. De Vriese
    • 3
  • Richard J. H. Smith
    • 4
  • Samih H. Nasr
    • 1
  • Lynn D. Cornell
    • 1
  • Loren P. Herrera Hernandez
    • 1
  • Yuzhou Zhang
    • 4
  • Sanjeev Sethi
    • 1
  1. 1.Division of Anatomic Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA
  2. 2.Division of Nephrology and Hypertension, Department of Internal MedicineMayo ClinicRochesterUSA
  3. 3.Division of NephrologyAZ Sint-Jan BruggeBruggeBelgium
  4. 4.Otolaryngology and Renal Research Laboratories, Division of Nephrology, Departments of Internal Medicine and PediatricsCarver College of MedicineIowaUSA

Personalised recommendations