Associations of dietary macronutrients with glomerular filtration rate and kidney dysfunction: Tehran lipid and glucose study

Abstract

Background

Although dietary components may play a role in the development of chronic kidney disease (CKD), data on this topic are scarce. The objective of this study was to investigate the association between macronutrient intakes and CKD in a large non-diabetic adult population-based study.

Methods

This cross-sectional study recruited 5,316 participants aged ≥27 years without diabetes within the framework of the Tehran lipid and glucose study. Dietary intake was collected using a validated food-frequency questionnaire. Macronutrients intake including total-, animal-, and plant-protein, carbohydrate, simple sugar, fructose, total fat, saturated fatty acids, poly- and monounsaturated-fatty acids (PUFA and MUFA), and n-3 and n-6 fatty acids was categorized into quartiles. Anthropometrics, blood pressure, serum creatinine, and fasting plasma glucose and lipids were measured. Estimated glomerular filtration rate (eGFR) was calculated using the Modification of Diet in Renal Disease Study equation. CKD was defined as eGFR <60 ml/min/1.73 m2.

Result

Mean age of participants was 45.0 ± 12.2 years. Mean eGFR was 71.9 ± 11.1 ml/min/1.73 m2, and 13 % had CKD. After adjustment for serum triglycerides and cholesterol, body mass index, and hypertension, the risk of CKD decreased in the highest quartile compared to lowest quartile of plant protein (OR, 95 % CI) (0.70, 0.51–0.97), PUFA (0.73, 0.55–0.99), and n-6 fatty acids (0.75, 0.57–0.97). However, the risk of CKD increased in the highest quartile of animal protein (1.37, 1.05–1.79) compared to the lowest.

Conclusion

Plant protein, PUFA, and n-6 fatty acids are associated with a lower risk of CKD, independently of hypertension and diabetic mellitus, while animal protein may be a risk factor for CKD in adults.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1–S266

    Google Scholar 

  2. 2.

    Imai E, Horio M, Yamagata K et al (2008) Slower decline of glomerular filtration rate in the Japanese general population: a longitudinal 10-year follow-up study. Hypertens Res 31:433–441

    Article  PubMed  Google Scholar 

  3. 3.

    Xu R, Zhang L, Zhang P et al (2009) Comparison of the prevalence of chronic kidney disease among different ethnicities: Beijing CKD survey and American NHANES. Nephrol Dial Transplant 24:1220–1226

    Article  PubMed  Google Scholar 

  4. 4.

    Lin J, Fung TT, Hu FB et al (2011) Association of dietary patterns with albuminuria and kidney function decline in older white women: a subgroup analysis from the Nurses’ Health Study. Am J Kidney Dis 57:245–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. 5.

    Chrysohoou C, Panagiotakos DB, Pitsavos C et al (2010) Adherence to the Mediterranean diet is associated with renal function among healthy adults: the ATTICA study. J Ren Nutr 20:176–184

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Daviglus ML, Greenland P, Stamler J et al (2005) Relation of nutrient intake to microalbuminuria in nondiabetic middle-aged men and women: International Population Study on macronutrients and blood pressure (INTERMAP). Am J Kidney Dis 45:256–266

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Higashiyama A, Watanabe M, Kokubo Y et al (2010) Relationships between protein intake and renal function in a Japanese general population: NIPPON DATA90. J Epidemiol 20(Suppl 3):S537–S543

    Article  PubMed Central  PubMed  Google Scholar 

  8. 8.

    Knight EL, Stampfer MJ, Hankinson SE et al (2003) The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med 138:460–467

    Article  PubMed  Google Scholar 

  9. 9.

    Diaz-Lopez A, Bullo M, Basora J et al (2013) Cross-sectional associations between macronutrient intake and chronic kidney disease in a population at high cardiovascular risk. Clin Nutr 32:606–612

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Pedrini MT, Levey AS, Lau J et al (1996) The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 124:627–632

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Walrand S, Short KR, Bigelow ML et al (2008) Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab 295:E921–E928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. 12.

    Frank H, Graf J, Amann-Gassner U et al (2009) Effect of short-term high-protein compared with normal-protein diets on renal hemodynamics and associated variables in healthy young men. Am J Clin Nutr 90:1509–1516

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Gopinath B, Harris DC, Flood VM et al (2011) Consumption of long-chain n-3 PUFA, alpha-linolenic acid and fish is associated with the prevalence of chronic kidney disease. Br J Nutr 105:1361–1368

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Gopinath B, Harris DC, Flood VM et al (2011) Carbohydrate nutrition is associated with the 5-year incidence of chronic kidney disease. J Nutr 141:433–439

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Azizi F, Rahmani M, Emami H et al (2002) Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1). Soz Praventivmed 47:408–426

    Article  PubMed  Google Scholar 

  16. 16.

    Azizi F, Ghanbarian A, Momenan AA et al (2009) Prevention of non-communicable disease in a population in nutrition transition: Tehran lipid and glucose study phase II. Trials 10:5

    Article  PubMed Central  PubMed  Google Scholar 

  17. 17.

    Hosseini-Esfahani F, Jessri M, Mirmiran P et al (2010) Adherence to dietary recommendations and risk of metabolic syndrome: Tehran lipid and glucose study. Metabolism 59:1833–1842

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Mirmiran P, Esfahani FH, Mehrabi Y et al (2010) Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr 13:654–662

    Article  PubMed  Google Scholar 

  19. 19.

    Asghari G, Rezazadeh A, Hosseini-Esfahani F et al (2012) Reliability, comparative validity and stability of dietary patterns derived from an FFQ in the Tehran lipid and glucose study. Br J Nutr 108:1109–1117

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    The Nutrient Data Laboratory (2009) Food Composition Table (FCT) FaNIC, United States Department of Agriculture (USDA). Available from URL: http://www.nal.usda.gov/fnic/foodcomp. Accessed date 2009

  21. 21.

    Azar MSE (1980) Food Composition Table of Iran. National Nutrition and Food Research Institute. Shahid Beheshti University Press, Tehran

  22. 22.

    Mancia G, De Backer G, Dominiczak A et al (2007) 2007 guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 25:1105–1187

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Lin J, Hu FB, Curhan GC (2010) Associations of diet with albuminuria and kidney function decline. Clin J Am Soc Nephrol 5:836–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. 25.

    Barbosa AC, Lajolo FM, Genovese MI (2011) Effect of free or protein-associated soy isoflavones on the antioxidant status in rats. J Sci Food Agric 91:721–731

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Braun P, Aubourg S, Van Leene J et al (2013) Plant protein interactomes. Annu Rev Plant Biol 64:161–187

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Curhan GC, Willett WC, Rimm EB et al (1993) A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med 328:833–838

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Breslau NA, Brinkley L, Hill KD et al (1988) Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J Clin Endocrinol Metab 66:140–146

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Coe FL, Moran E, Kavalich AG (1976) The contribution of dietary purine over-consumption to hyperuricosuria in calcium oxalate stone formers. J Chronic Dis 29:793–800

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Alexander RT, Hemmelgarn BR, Wiebe N et al (2012) Kidney stones and kidney function loss: a cohort study. BMJ 345:e5287

    Article  PubMed Central  PubMed  Google Scholar 

  31. 31.

    Shcherbak AV, Kozlovskaia LV, Bobkova IN et al (2013) Hyperuricemia and the problem of chronic kidney disease. Ter Arkh 85:100–104

    CAS  PubMed  Google Scholar 

  32. 32.

    Sun SZ, Flickinger BD, Williamson-Hughes PS et al (2010) Lack of association between dietary fructose and hyperuricemia risk in adults. Nutr Metab (Lond) 7:16

    Article  Google Scholar 

  33. 33.

    Lau C, Faerch K, Glumer C et al (2005) Dietary glycemic index, glycemic load, fiber, simple sugars, and insulin resistance: the Inter99 study. Diabetes Care 28:1397–1403

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Chen S, Chen Y, Liu X et al (2013) Association of insulin resistance with chronic kidney disease in non-diabetic subjects with normal weight. PLoS One 8:e74058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. 35.

    Chandalia M, Garg A, Lutjohann D et al (2000) Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med 342:1392–1398

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Krishnamurthy VM, Wei G, Baird BC et al (2012) High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int 81:300–306

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Palafox-Carlos H, Ayala-Zavala JF, Gonzalez-Aguilar GA (2011) The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J Food Sci 76:R6–R15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. 38.

    Chen H, Chen D, Michiels J et al (2013) Dietary fiber affects intestinal mucosal barrier function by regulating intestinal bacteria in weaning piglets. Commun Agric Appl Biol Sci 78:71–78

    CAS  PubMed  Google Scholar 

  39. 39.

    Taylor EN, Curhan GC (2008) Fructose consumption and the risk of kidney stones. Kidney Int 73:207–212

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Milne DB, Nielsen FH (2000) The interaction between dietary fructose and magnesium adversely affects macromineral homeostasis in men. J Am Coll Nutr 19:31–37

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Nguyen NU, Dumoulin G, Henriet MT et al (1995) Increase in urinary calcium and oxalate after fructose infusion. Horm Metab Res 27:155–158

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Curhan GC, Taylor EN (2008) 24-h uric acid excretion and the risk of kidney stones. Kidney Int 73:489–496

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Hosseini-Esfahani F, Bahadoran Z, Mirmiran P et al (2011) Dietary fructose and risk of metabolic syndrome in adults: Tehran lipid and glucose study. Nutr Metab (Lond) 8:50

    Article  CAS  Google Scholar 

  44. 44.

    Ha V, Sievenpiper JL, de Souza RJ et al (2012) Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 59:787–795

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Bray GA (2012) Fructose and risk of cardiometabolic disease. Curr Atheroscler Rep 14:570–578

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Ruan X, Guan Y (2009) Metabolic syndrome and chronic kidney disease. J Diabetes 1:236–245

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Lin J, Judd S, Le A et al (2010) Associations of dietary fat with albuminuria and kidney dysfunction. Am J Clin Nutr 92:897–904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. 48.

    Kshirsagar AV, Bomback AS, Bang H et al (2008) Association of C-reactive protein and microalbuminuria (from the National Health and Nutrition Examination Surveys, 1999 to 2004). Am J Cardiol 101:401–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. 49.

    Ma Y, Griffith JA, Chasan-Taber L et al (2006) Association between dietary fiber and serum C-reactive protein. Am J Clin Nutr 83:760–766

    PubMed Central  CAS  PubMed  Google Scholar 

  50. 50.

    Masson CJ, Mensink RP (2011) Exchanging saturated fatty acids for (n-6) polyunsaturated fatty acids in a mixed meal may decrease postprandial lipemia and markers of inflammation and endothelial activity in overweight men. J Nutr 141:816–821

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Esmaillzadeh A, Kimiagar M, Mehrabi Y et al (2007) Dietary patterns and markers of systemic inflammation among Iranian women. J Nutr 137:992–998

    CAS  PubMed  Google Scholar 

  52. 52.

    Lopez-Garcia E, Schulze MB, Fung TT et al (2004) Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 80:1029–1035

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the Research Institute for Endocrine Sciences, Shadid Beheshti University of Medical Sciences, Tehran, Iran. All authors read and approved the final manuscript. The authors express appreciation to the participants in the Tehran Lipid and Glucose Study for their enthusiastic support, and the staff of the Tehran Lipid and Glucose Study Unit of the Research Institute for Endocrine Sciences, for their valuable help. We would like to acknowledge Ms. N. Shiva for critical edition of English grammar and syntax of the manuscript.

Conflict of interest

None of the authors had any personal or financial conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Parvin Mirmiran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuzbashian, E., Asghari, G., Mirmiran, P. et al. Associations of dietary macronutrients with glomerular filtration rate and kidney dysfunction: Tehran lipid and glucose study. J Nephrol 28, 173–180 (2015). https://doi.org/10.1007/s40620-014-0095-7

Download citation

Keywords

  • Chronic kidney disease
  • Glomerular filtration rate
  • Protein
  • Fatty acids