Skip to main content
Log in

L’ormone luteinizzante e la gonadotropina corionica umana: attività molecolari e cliniche mediate da un unico recettore

  • RASSEGNA
  • Published:
L'Endocrinologo Aims and scope

Sommario

L’ormone luteinizzante (LH) e la gonadotropina corionica umana (hCG) sono glicoproteine che svolgono un ruolo fondamentale per la riproduzione. L’LH modula la sintesi di androgeni e la gametogenesi in entrambi i sessi, mentre l’hCG è prodotta nella donna durante la gravidanza. Questi due ormoni hanno un’origine ancestrale comune, seppure nel corso dell’evoluzione abbiano assunto specifiche funzioni fisiologiche, supportate dall’attivazione di differenti segnali intracellulari mediati da un unico recettore (LHCGR) espresso nelle gonadi. Ciò comporta che queste due gonadotropine abbiano una diversa attività endocrina, nonostante siano state utilizzate per lungo tempo come equivalenti nella pratica clinica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Bibliografia

  1. Szkudlinski MW (2015) New frontier in glycoprotein hormones and their receptors structure–function. Front Endocrinol (Lausanne) 6:155

    Article  Google Scholar 

  2. Casarini L, Santi D, Brigante G, Simoni M (2018) Two hormones for one receptor: evolution, biochemistry, actions, and pathophysiology of LH and hCG. Endocr Rev 39:549–592

    Article  Google Scholar 

  3. Sun PD, Davies DR (1995) The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct 24:269–291

    Article  CAS  Google Scholar 

  4. Roch GJ, Sherwood NM (2014) Glycoprotein hormones and their receptors emerged at the origin of metazoans. Genome Biol Evol 6:1466–1479

    Article  Google Scholar 

  5. Li MD, Ford JJ (1998) A comprehensive evolutionary analysis based on nucleotide and amino acid sequences of the alpha- and beta-subunits of glycoprotein hormone gene family. J Endocrinol 156:529–542

    Article  CAS  Google Scholar 

  6. Nagirnaja L, Rull K, Uusküla L et al. (2010) Genomics and genetics of gonadotropin beta-subunit genes: unique FSHB and duplicated LHB/CGB loci. Mol Cell Endocrinol 329:4–16

    Article  CAS  Google Scholar 

  7. Cole LA (2012) hCG, five independent molecules. Clin Chim Acta 413:48–65

    Article  CAS  Google Scholar 

  8. Wide L, Eriksson K (2013) Dynamic changes in glycosylation and glycan composition of serum FSH and LH during natural ovarian stimulation. Ups J Med Sci 118:153–164

    Article  Google Scholar 

  9. Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328:175–178

    Article  CAS  Google Scholar 

  10. Casarini L, Lispi M, Longobardi S et al. (2012) LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE 7:e46682

    Article  CAS  Google Scholar 

  11. Casarini L, Riccetti L, De Pascali F et al. (2017) Estrogen modulates specific life and death signals induced by LH and hCG in human primary granulosa cells in vitro. Int J Mol Sci 18(5):926

    Article  Google Scholar 

  12. Gupta C, Chapekar T, Chhabra Y (2012) Differential response to sustained stimulation by hCG & LH on goat ovarian granulosa cells. Indian J Med Res 135(3):331–340

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Riccetti L, De Pascali F, Gilioli L et al. (2017) Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro. Reprod Biol Endocrinol 15(1):2

    Article  Google Scholar 

  14. Riccetti L, Yvinec R, Klett D et al. (2017) Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG Receptors. Sci Rep 7:940

    Article  Google Scholar 

  15. Mak SM, Wong WY, Chung HS et al. (2017) Effect of mid-follicular phase recombinant LH versus urinary HCG supplementation in poor ovarian responders undergoing IVF – a prospective double-blinded randomized study. Reprod Biomed Online 34:258–266

    Article  CAS  Google Scholar 

  16. Ascoli M, Fanelli F, Segaloff DL (2002) The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev 23:141–174

    Article  CAS  Google Scholar 

  17. Huhtaniemi I (2015) A short evolutionary history of FSH-stimulated spermatogenesis. Hormones 14(4):468–478

    PubMed  Google Scholar 

  18. Chappel SC, Howles C (1991) Reevaluation of the roles of luteinizing hormone and follicle-stimulating hormone in the ovulatory process. Hum Reprod 6(9):1206–1212

    Article  CAS  Google Scholar 

  19. Jonas KC, Chen S, Virta M et al. (2018) Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers. Sci Rep 8:2239

    Article  CAS  Google Scholar 

  20. Cole LA (2013) hCG physiology. Placenta 34:1257

    Article  CAS  Google Scholar 

  21. Santi D, Casarini L, Alviggi C, Simoni M (2017) Efficacy of follicle-stimulating hormone (FSH) alone, FSH + luteinizing hormone, human menopausal gonadotropin or FSH + human chorionic gonadotropin on assisted reproductive technology outcomes in the “personalized” medicine era: a meta-analysis. Front Endocrinol (Lausanne) 8:114

    Article  Google Scholar 

  22. Berndt S, Perrier d’Hauterive S, Blacher S et al. (2006) Angiogenic activity of human chorionic gonadotropin through LH receptor activation on endothelial and epithelial cells of the endometrium. FASEB J 20:2630–2632

    Article  CAS  Google Scholar 

  23. Cole LA (2010) Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol 8:102

    Article  Google Scholar 

  24. Barrio R, De Luis D, Alonso M et al. (1999) Induction of puberty with human chorionic gonadotropin and follicle-stimulating hormone in adolescent males with hypogonadotropic hypogonadism. Fertil Steril 71(2):244–248

    Article  CAS  Google Scholar 

  25. Kobori Y, Suzuki K, Iwahata T et al. (2015) Hormonal therapy (hCG and rhFSH) for infertile men with adult-onset idiopathic hypogonadotropic hypogonadism. Syst Biol Reprod Med 61(2):110–112

    Article  CAS  Google Scholar 

  26. Santi D, Spaggiari G, Casarini L et al. (2017) Central hypogonadism due to a giant, “silent” FSH-secreting, atypical pituitary adenoma: effects of adenoma dissection and short-term Leydig cell stimulation by luteinizing hormone (LH) and human chorionic gonadotropin (hCG). Aging Male 20:96–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Santi.

Ethics declarations

Conflitto di interesse

Gli autori Samantha Sperduti, Elia Paradiso, Clara Lazzaretti, Vincenzo Rochira, Giulia Brigante, Daniele Santi, Manuela Simoni e Livio Casarini dichiarano di non avere conflitti di interesse.

Consenso informato

Lo studio presentato in questo articolo non ha richiesto sperimentazione umana.

Studi sugli animali

Gli autori di questo articolo non hanno eseguito studi sugli animali.

Additional information

Proposto da Daniele Santi.

Nota della casa editrice

Springer Nature rimane neutrale in riguardo alle rivendicazioni giurisdizionali nelle mappe pubblicate e nelle affiliazioni istituzionali.

Informazioni Supplementari

I link al materiale elettronico supplementare sono elencati qui sotto.

(DOC 34 kB)

(DOC 30 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperduti, S., Paradiso, E., Lazzaretti, C. et al. L’ormone luteinizzante e la gonadotropina corionica umana: attività molecolari e cliniche mediate da un unico recettore. L'Endocrinologo 22, 201–206 (2021). https://doi.org/10.1007/s40619-021-00862-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40619-021-00862-z

Parole chiave

Navigation