Skip to main content

Advertisement

Log in

HYPOXIA induces lncRNA HOTAIR for recruiting RELA in papillary thyroid cancer cells to upregulate miR-181a and promote angiogenesis

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Papillary thyroid carcinoma (PTC) is one of the most common subtypes of thyroid carcinoma. Exosomal miR-181a plays an important role in the development of PTC. This study examined the regulatory mechanism of miR-181a under conditions of hypoxia and its impact on angiogenesis.

Methods

A ribonucleoprotein immunoprecipitation (RIP) experiment was conducted to verify the interaction between HOTAIR and RELA. The relationship between RELA and the miR-181a promoter was detected by ChIP-qPCR. Short hairpin (sh) RNA was designed to knock down HOTAIR in TPC cells. The underlying mechanism of miR-181a was verified by use of dual-luciferase assays and rescue experiments. The regulatory effect of GATA6 on angiogenesis was studied using CCK8, EdU, Transwell, and western blot assays.

Results

A RIP assay showed that HOTAIR could bind to RELA under hypoxic conditions. ChIP-qPCR and dual luciferase assays showed RELA could interact with the miR181a promoter and upregulate miR-181a. Knockdown of HOTAIR downregulated miR-181a in TPC-1 cells, and the downregulation could be rescued by RELA overexpression. MiR-181a downregulated GATA6 in HUVEC cells. Overexpression of GATA6 inhibited HUVEC proliferation, migration, tube formation, and EGFR expression. Exosomal miR-181a promoted angiogenesis by downregulating GATA6 expression.

Conclusion

HOTAIR activated RELA to upregulate miR-181a during hypoxia. Exosomal miR-181a promotes tumor angiogenesis by downregulating GATA6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Sherman SI (2003) Thyroid carcinoma. Lancet 361(9356):501–511

    Article  PubMed  Google Scholar 

  2. Siegel RL et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  3. Xing M (2013) Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 13(3):184–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miro C et al (2021) Thyroid hormone enhances angiogenesis and the Warburg effect in squamous cell carcinomas. Cancers 13(11):2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park JE et al (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9(6):1085–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu F et al (2019) Exosomes increased angiogenesis in papillary thyroid cancer microenvironment. Endocr Relat Cancer 26(5):525–538

    Article  CAS  PubMed  Google Scholar 

  7. Zhu H et al (2016) Onco-lncRNA HOTAIR and its functional genetic variants in papillary thyroid carcinoma. Sci Rep 6:31969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhan A et al (2017) Histone methylase MLL1 coordinates with HIF and regulate lncRNA HOTAIR expression under hypoxia. Gene 629:16–28

    Article  CAS  PubMed  Google Scholar 

  9. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  10. Umezu T et al (2014) Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124(25):3748–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang X et al (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35(6):856–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moriondo G et al (2023) Intermittent hypoxia mediates cancer development and progression through HIF-1 and miRNA regulation. Arch Bronconeumol 59(10):629–637

    Article  PubMed  Google Scholar 

  13. Ghosh G et al (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Invest 120(11):4141–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bao L et al (2018) Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. Oncogene 37(21):2873–2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu J et al (2018) MicroRNA-181a promotes cell proliferation and inhibits apoptosis in gastric cancer by targeting RASSF1A. Oncol Rep 40(4):1959–1970

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun W et al (2018) MicroRNA-181a promotes angiogenesis in colorectal cancer by targeting SRCIN1 to promote the SRC/VEGF signaling pathway. Cell Death Dis 9(4):438

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sun CX et al (2022) MiR-181a promotes cell proliferation and migration through targeting KLF15 in papillary thyroid cancer. Clin Transl Oncol 24(1):66–75

    Article  CAS  PubMed  Google Scholar 

  18. Hu M et al (2020) LncRNA HOTAIR knockdown inhibits glycolysis by regulating miR-130a-3p/HIF1A in hepatocellular carcinoma under hypoxia. Biomed Pharmacother 125:109703

    Article  CAS  PubMed  Google Scholar 

  19. Zhao X, Zhang W, Ji W (2018) miR-181a targets GATA6 to inhibit the progression of human laryngeal squamous cell carcinoma. Future Oncol 14(17):1741–1753

    Article  CAS  PubMed  Google Scholar 

  20. Sun X et al (2014) Systemic delivery of microRNA-181b inhibits nuclear factor-κb activation, vascular inflammation, and atherosclerosis in apolipoprotein E–deficient mice. Circ Res 114(1):32–40

    Article  CAS  PubMed  Google Scholar 

  21. Larsen AK et al (2011) Targeting EGFR and VEGF (R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther 131(1):80–90

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y et al (2021) miR-181a, delivered by hypoxic PTC-secreted exosomes, inhibits DACT2 by downregulating MLL3, leading to YAP-VEGF-mediated angiogenesis. Mol Ther Nucleic Acids 24:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xue X et al (2016) LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35(21):2746–2755

    Article  CAS  PubMed  Google Scholar 

  24. Ding J et al (2018) Estrogen receptor β promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene 37(37):5037–5053

    Article  CAS  PubMed  Google Scholar 

  25. Chang YT et al (2018) HOTAIR is a REST-regulated lncRNA that promotes neuroendocrine differentiation in castration resistant prostate cancer. Cancer Lett 433:43–52

    Article  CAS  PubMed  Google Scholar 

  26. Taniue K et al (2016) ASBEL-TCF3 complex is required for the tumorigenicity of colorectal cancer cells. Proc Natl Acad Sci U S A 113(45):12739–12744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Özeş AR et al (2016) NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene 35(41):5350–5361

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li X et al (2014) Modulation of gene expression regulated by the transcription factor NF-κB/RelA. J Biol Chem 289(17):11927–11944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim GC et al (2018) Upregulation of Ets1 expression by NFATc2 and NFKB1/RELA promotes breast cancer cell invasiveness. Oncogenesis 7(11):91

    Article  PubMed  PubMed Central  Google Scholar 

  30. Khare V et al (2019) RNA helicase p68 deploys β-catenin in regulating RelA/p65 gene expression: implications in colon cancer. J Exp Clin Cancer Res 38(1):330

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chandrasekaran KS, Sathyanarayanan A, Karunagaran D (2017) miR-214 activates TP53 but suppresses the expression of RELA, CTNNB1, and STAT3 in human cervical and colorectal cancer cells. Cell Biochem Funct 35(7):464–471

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y et al (2014) Immunohistochemical evaluation of midkine and nuclear factor-kappa B as diagnostic biomarkers for papillary thyroid cancer and synchronous metastasis. Life Sci 118(1):39–45

    Article  CAS  PubMed  Google Scholar 

  33. Xu RX et al (2015) DNA damage-induced NF-κB activation in human glioblastoma cells promotes miR-181b expression and cell proliferation. Cell Physiol Biochem 35(3):913–925

    Article  CAS  PubMed  Google Scholar 

  34. Sun Y, Xiong X, Wang X (2019) RELA promotes hypoxia-induced angiogenesis in human umbilical vascular endothelial cells via LINC01693/miR-302d/CXCL12 axis. J Cell Biochem 120(8):12549–12558

    Article  CAS  PubMed  Google Scholar 

  35. Nam SY et al (2011) A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-κB promotes gastric tumour growth and angiogenesis. Br J Cancer 104(1):166–174

    Article  CAS  PubMed  Google Scholar 

  36. Wu Q et al (2019) Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol 12(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu H et al (2022) Correction to: GATA6 suppresses migration and metastasis by regulating the miR-520b/CREB1 axis in gastric cancer. Cell Death Dis 13(3):243

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhong Y et al (2011) GATA6 activates Wnt signaling in pancreatic cancer by negatively regulating the Wnt antagonist Dickkopf-1. PLoS One 6(7):e22129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song Y et al (2015) GATA6 is overexpressed in breast cancer and promotes breast cancer cell epithelial-mesenchymal transition by upregulating slug expression. Exp Mol Pathol 99(3):617–627

    Article  CAS  PubMed  Google Scholar 

  40. Peng T et al (2019) The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma. Int J Oncol 55(3):657–670

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Froese N et al (2011) GATA6 promotes angiogenic function and survival in endothelial cells by suppression of autocrine transforming growth factor beta/activin receptor-like kinase 5 signaling. J Biol Chem 286(7):5680–5690

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Projects in Guangzhou (No. 202102010081).

Author information

Authors and Affiliations

Authors

Contributions

Yingxue Wang conceived and designed the experiments. Jieying Lu, Xinyi Liu performed the experiments. Aiying Cen and Yuanjia Hong analyzed the data. Yingxue Wang wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Y. Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Research involving human participants and/or animals

Animal and human experiments are not involved in this manuscript.

Informed consent

For this type of study, no informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Liu, X., Cen, A. et al. HYPOXIA induces lncRNA HOTAIR for recruiting RELA in papillary thyroid cancer cells to upregulate miR-181a and promote angiogenesis. J Endocrinol Invest (2024). https://doi.org/10.1007/s40618-024-02388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40618-024-02388-1

Keywords

Navigation