Skip to main content
Log in

Association of serum 25-hydroxyvitamin D with cardiovascular mortality and kidney outcome in patients with early stages of CKD

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

While serum 25-hydroxyvitamin D (25[OH]D) deficiency is prevalent in chronic kidney disease (CKD), the effects of 25(OH)D deficiency on cardiovascular mortality and kidney outcomes in patients with early-stage CKD remain incompletely understood.

Methods

This multicenter retrospective cohort study included adult patients with stages 1–3 CKD from 19 medical centers across China between January 2000 and May 2021. The primary outcome was cardiovascular mortality. The secondary study outcome included CKD progression (defined as a sustained > 40% eGFR decrease from baseline or progress to end-stage kidney disease), and annual percentage change of eGFR.

Results

Of 9229 adults with stages 1–3 CKD, 27.0% and 38.9% had severe (< 10 ng/mL) and moderate (10 to < 20 ng/mL) serum 25(OH)D deficiency, respectively. Compared with patients having 25(OH)D ≥ 20 ng/mL, a significantly higher risk of cardiovascular mortality (hazard ratio [HR] 1.90, 95% CI 1.37–2.63), CKD progression (HR 2.20, 95% CI 1.68–2.88), and a steeper annual decline in eGFR (estimate − 7.87%; 95% CI − 10.24% to − 5.51% per year) was found in those with serum 25(OH)D < 10 ng/mL. Similar results were obtained in subgroups and by sensitivity analyses.

Conclusions

25(OH)D deficiency is associated with increased risks of cardiovascular mortality and CKD progression in patients with early-stage CKD. Studies are needed to determine whether early intervention for 25(OH)D deficiency could improve the prognosis of patients with early-stage CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bikbov B, Purcell CA, Levey AS, Smith M, Abdoli A, Abebe M et al (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. The Lancet 395(10225):709–733. https://doi.org/10.1016/S0140-6736(20)30045-3

    Article  Google Scholar 

  2. Xie Y, Bowe B, Mokdad AH, Xian H, Yan Y, Li T et al (2018) Analysis of the global burden of disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int 94(3):567–581. https://doi.org/10.1016/j.kint.2018.04.011

    Article  PubMed  Google Scholar 

  3. Wang L, Xu X, Zhang M, Hu C, Zhang X, Li C et al (2023) Prevalence of chronic kidney disease in china: results from the sixth china chronic disease and risk factor surveillance. JAMA Intern Med 183(4):298. https://doi.org/10.1001/jamainternmed.2022.6817

    Article  PubMed  PubMed Central  Google Scholar 

  4. Samuel S, Sitrin MD (2008) Vitamin D’s role in cell proliferation and differentiation: nutrition reviews©, vol 66, no s2. Nutr Rev 66:S116–S124. https://doi.org/10.1111/j.1753-4887.2008.00094.x

    Article  PubMed  Google Scholar 

  5. Lagishetty V, Liu NQ, Hewison M (2011) Vitamin D metabolism and innate immunity. Mol Cell Endocrinol 347(1–2):97–105. https://doi.org/10.1016/j.mce.2011.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang P, Guo D, Xu B, Huang C, Yang S, Wang W et al (2022) Association of serum 25-hydroxyvitamin D With cardiovascular outcomes and all-cause mortality in individuals with prediabetes and diabetes: results from the UK biobank prospective cohort study. Diabetes Care 45(5):1219–1229. https://doi.org/10.2337/dc21-2193

    Article  CAS  PubMed  Google Scholar 

  7. Forman JP, Williams JS, Fisher NDL (2010) Plasma 25-hydroxyvitamin D and regulation of the renin-angiotensin system in humans. Hypertension 55(5):1283–1288. https://doi.org/10.1161/HYPERTENSIONAHA.109.148619

    Article  CAS  PubMed  Google Scholar 

  8. Sofianopoulou E, Kaptoge SK, Afzal S, Jiang T, Gill D, Gundersen TE et al (2024) Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: observational and mendelian randomisation analyses. Lancet Diabetes Endocrinol 12(1):e2-11. https://doi.org/10.1016/S2213-8587(23)00287-5

    Article  Google Scholar 

  9. Agarwal R (2009) Vitamin D, proteinuria, diabetic nephropathy, and progression of CKD: Table 1. Clin J Am Soc Nephrol 4(9):1523–1528. https://doi.org/10.2215/CJN.02010309

    Article  CAS  PubMed  Google Scholar 

  10. Kramer H, Sempos C, Cao G, Luke A, Shoham D, Cooper R et al (2012) Mortality rates across 25-Hydroxyvitamin D (25OH. D) levels among adults with and without estimated glomerular filtration rate 60 ml/min/173 m2: the third national health and nutrition examination survey. PLoS ONE 7(10):e47458. https://doi.org/10.1371/journal.pone.0047458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pilz S, Tomaschitz A, Friedl C, Amrein K, Drechsler C, Ritz E et al (2011) Vitamin D status and mortality in chronic kidney disease. Nephrol Dial Transplant 26(11):3603–3609. https://doi.org/10.1093/ndt/gfr076

    Article  CAS  PubMed  Google Scholar 

  12. Giustina A, Bouillon R, Dawson-Hughes B, Ebeling PR, Lazaretti-Castro M, Lips P et al (2022) Vitamin D in the older population: a consensus statement. Endocrine. https://doi.org/10.1007/s12020-022-03208-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vaidya A, Sun B, Forman JP, Hopkins PN, Brown NJ, Kolatkar NS et al (2011) The fok1 vitamin D receptor gene polymorphism is associated with plasma renin activity in caucasians: vitamin D receptor polymorphisms and plasma renin activity. Clin Endocrinol 74(6):783–790. https://doi.org/10.1111/j.1365-2265.2011.03991.x

    Article  CAS  Google Scholar 

  14. Zhang Y, Kong J, Deb DK, Chang A, Li YC (2010) Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J Am Soc Nephrol 21(6):966–973. https://doi.org/10.1681/ASN.2009080872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ravani P, Malberti F, Tripepi G, Pecchini P, Cutrupi S, Pizzini P et al (2009) Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int 75(1):88–95. https://doi.org/10.1038/ki.2008.501

    Article  CAS  PubMed  Google Scholar 

  16. Scialla JJ, Astor BC, Isakova T, Xie H, Appel LJ, Wolf M (2013) Mineral metabolites and CKD progression in African Americans. J Am Soc Nephrol 24(1):125–135. https://doi.org/10.1681/ASN.2012070713

    Article  CAS  PubMed  Google Scholar 

  17. The CRDS investigators. Chinese Renal Disease Data System, China. http://www.crds-network.org.cn/#/database. Accessed July 29, 2022

  18. Xu X, Nie S, Xu H, Liu B, Weng J, Chen C et al (2023) Detecting neonatal AKI by serum cystatin C. J Am Soc Nephrol. https://doi.org/10.1681/ASN.0000000000000125

    Article  PubMed  PubMed Central  Google Scholar 

  19. Su G, Xiao C, Cao Y, Gao P, Xie D, Cai Q et al (2023) Piperacillin/tazobactam and risk of acute kidney injury in adults hospitalized with infection without vancomycin: a multi-centre real-world data analysis. Int J Antimicrob Agents 61(1):106691. https://doi.org/10.1016/j.ijantimicag.2022.106691

    Article  CAS  PubMed  Google Scholar 

  20. Zhou S, Su L, Xu R, Li Y, Chen R, Cao Y et al (2023) Statin initiation and risk of incident kidney disease in patients with diabetes. Can Med Assoc J 195(21):E729–E738. https://doi.org/10.1503/cmaj.230093

    Article  Google Scholar 

  21. Su L, Li Y, Chen R, Zhang X, Cao Y, Luo F et al (2023) Epidemiology and outcomes of post-AKI proteinuria. Clin Kidney J. https://doi.org/10.1093/ckj/sfad129

    Article  PubMed  PubMed Central  Google Scholar 

  22. Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y et al (2021) New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med 385(19):1737–1749. https://doi.org/10.1056/NEJMoa2102953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu S, Wu X, Lopez AD, Wang L, Cai Y, Page A et al (2016) An integrated national mortality surveillance system for death registration and mortality surveillance, China. Bull World Health Organ 94(1):46–57. https://doi.org/10.2471/BLT.15.153148

    Article  PubMed  Google Scholar 

  24. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930. https://doi.org/10.1210/jc.2011-0385

    Article  CAS  PubMed  Google Scholar 

  25. Melamed ML, Chonchol M, Gutiérrez OM, Kalantar-Zadeh K, Kendrick J, Norris K et al (2018) The role of vitamin D in CKD stages 3 to 4: report of a scientific workshop sponsored by the National Kidney Foundation. Am J Kidney Dis 72(6):834–845. https://doi.org/10.1053/j.ajkd.2018.06.031

    Article  PubMed  PubMed Central  Google Scholar 

  26. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. https://doi.org/10.1056/NEJMra070553

    Article  CAS  PubMed  Google Scholar 

  27. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150

    Google Scholar 

  28. Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94(446):496–509. https://doi.org/10.1080/01621459.1999.10474144

    Article  Google Scholar 

  29. Ballew SH, Zhou L, Surapaneni A, Grams ME, Windham BG, Selvin E et al (2023) A novel creatinine muscle index based on creatinine filtration: associations with frailty and mortality. J Am Soc Nephrol 34(3):495–504. https://doi.org/10.1681/ASN.0000000000000037

    Article  PubMed  PubMed Central  Google Scholar 

  30. KDIGO (2017) Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 7(1):1–59. https://doi.org/10.1016/j.kisu.2017.04.001

    Article  Google Scholar 

  31. Zhu K, Knuiman M, Divitini M, Hung J, Lim EM, Cooke BR et al (2018) Serum 25-hydroxyvitamin D as a predictor of mortality and cardiovascular events: a 20-year study of a community-based cohort. Clin Endocrinol 88(1):154–163. https://doi.org/10.1111/cen.13485

    Article  CAS  Google Scholar 

  32. Amer M, Qayyum R (2013) Relationship between 25-Hydroxyvitamin D and all-cause and cardiovascular disease mortality. Am J Med 126(6):509–514. https://doi.org/10.1016/j.amjmed.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  33. Reimer KC, Nadal J, Meiselbach H, Schmid M, Schultheiss UT, Kotsis F et al (2023) Association of mineral and bone biomarkers with adverse cardiovascular outcomes and mortality in the German Chronic Kidney Disease (GCKD) cohort. Bone Res 11(1):52. https://doi.org/10.1038/s41413-023-00291-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL, Smits G et al (2012) Associations of plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentrations with death and progression to maintenance dialysis in patients with advanced kidney disease. Am J Kidney Dis 60(4):567–575. https://doi.org/10.1053/j.ajkd.2012.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hannan M, Ansari S, Meza N, Anderson AH, Srivastava A, Waikar S et al (2021) Risk factors for CKD progression: overview of findings from the CRIC study. Clin J Am Soc Nephrol 16(4):648–659. https://doi.org/10.2215/CJN.07830520

    Article  CAS  PubMed  Google Scholar 

  36. Staples A, Wong C (2010) Risk factors for progression of chronic kidney disease. Curr Opin Pediatr 22(2):161–169. https://doi.org/10.1097/MOP.0b013e328336ebb0

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Boer IH, Katz R, Chonchol M, Ix JH, Sarnak MJ, Shlipak MG et al (2011) Serum 25-hydroxyvitamin D and change in estimated glomerular filtration rate. Clin J Am Soc Nephrol 6(9):2141–2149. https://doi.org/10.2215/CJN.02640311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou C, He P, Ye Z, Zhang Y, Zhang Y, Yang S et al (2022) Relationships of serum 25-hydroxyvitamin D concentrations, diabetes, genetic susceptibility, and new-onset chronic kidney disease. Diabetes Care 45(11):2518–2525. https://doi.org/10.2337/dc22-1194

    Article  CAS  PubMed  Google Scholar 

  39. Verouti SN, Tsilibary EC, Fragopoulou E, Iatrou C, Demopoulos CA, Charonis AS et al (2013) Vitamin D receptor activators upregulate and rescue podocalyxin expression in high glucose-treated human podocytes. Nephron Exp Nephrol 122(1–2):36–50. https://doi.org/10.1159/000346562

    Article  CAS  Google Scholar 

  40. Tomaschitz A, Pilz S, Ritz E, Grammer T, Drechsler C, Boehm BO et al (2010) Independent association between 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and the renin–angiotensin system. Clin Chim Acta 411(17–18):1354–1360. https://doi.org/10.1016/j.cca.2010.05.037

    Article  CAS  PubMed  Google Scholar 

  41. Dusso A, González EA, Martin KJ (2011) Vitamin D in chronic kidney disease. Best Pract Res Clin Endocrinol Metab 25(4):647–655. https://doi.org/10.1016/j.beem.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  42. Li YC, Kong J, Wei M, Chen Z-F, Liu SQ, Cao L-P (2002) 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. J Clin Investig 110(2):229–238. https://doi.org/10.1172/JCI0215219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF et al (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29(6):726–776. https://doi.org/10.1210/er.2008-0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Zheng Y, Chen P, Liang S, He P, Shao X et al (2021) The weak correlation between serum vitamin levels and chronic kidney disease in hospitalized patients: a cross-sectional study. BMC Nephrol 22(1):292. https://doi.org/10.1186/s12882-021-02498-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Agarwal R, Acharya M, Tian J, Hippensteel RL, Melnick JZ, Qiu P et al (2005) Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int 68(6):2823–2828. https://doi.org/10.1111/j.1523-1755.2005.00755.x

    Article  CAS  PubMed  Google Scholar 

  46. Timms PM, Mannan N, Hitman GA, Noonan K, Mills PG, Syndercombe-Court D et al (2002) Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders? QJM 95(12):787–796. https://doi.org/10.1093/qjmed/95.12.787

    Article  CAS  PubMed  Google Scholar 

  47. Fernández-Juárez G, Luño J, Barrio V, de Vinuesa SG, Praga M, Goicoechea M et al (2013) 25 (OH) Vitamin D levels and renal disease progression in patients with type 2 diabetic nephropathy and blockade of the renin-angiotensin system. Clin J Am Soc Nephrol 8(11):1870–1876. https://doi.org/10.2215/CJN.00910113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Boer IH, Ioannou GN, Kestenbaum B, Brunzell JD, Weiss NS (2007) 25-Hydroxyvitamin D levels and Albuminuria in the Third National Health and Nutrition Examination Survey (NHANES III). Am J Kidney Dis 50(1):69–77. https://doi.org/10.1053/j.ajkd.2007.04.015

    Article  CAS  PubMed  Google Scholar 

  49. Jorde R, Sneve M, Hutchinson M, Emaus N, Figenschau Y, Grimnes G (2010) Tracking of serum 25-hydroxyvitamin D levels during 14 years in a population-based study and during 12 months in an intervention study. Am J Epidemiol 171(8):903–908. https://doi.org/10.1093/aje/kwq005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was made possible thanks to the CRDS study Investigators: Hong Xu, PhD, Children's Hospital of Fudan University, Shanghai, China; Bicheng Liu, MD, Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China.; Jianping Weng, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.; Chunbo Chen, Department of Critical Care Medicine, Maoming People’s Hospital, Maoming, China; Huafeng Liu, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Qiongqiong Yang, Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Hua Li, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Yaozhong Kong, Department of Nephrology, the First People’s Hospital of Foshan, Foshan, Guangdong, China; Guisen Li, Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China; Qijun Wan, The Second People’s Hospital of Shenzhen, Shenzhen University, Shenzhen, China; Yan Zha, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, China; Ying Hu, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Gang Xu, Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Yongjun Shi, Huizhou Municipal Central Hospital, Sun Yat-Sen University, Huizhou, China; Yilun Zhou, Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Guobin Su, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Ying Tang, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Mengchun Gong, Institute of Health Management, Southern Medical University, Guangzhou, China.

Funding

This study is supported by grants the National Key R&D Program of China (2021YFC2500200 and 2021YFC2500204), the National Natural Science Foundation of China (81900626).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

SN, ML had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. YXL, CX, YPZ contributed equally as co-first authors. SN contributed to the study design. YXL, YPZ drafted the manuscript. YXL, FL contributed to the statistical analysis. QG, YQL, LCS, RQX, XDZ, RXC, SYZ, PPL, JL, the CRDS study Investigators, contributed to the data acquisition.

Corresponding authors

Correspondence to M. Liang or S. Nie.

Ethics declarations

Conflict of interest

The authors report no conflict of interest in this work.

Ethical approval

The study protocol was approved by the China Office of Human Genetic Resources for Data Preservation Application (approval number: 2021-BC0037) and the Medical Ethics Committee of Nanfang Hospital, Southern Medical University (approval number: NFEC-2019–213).

Informed consent

The study waived the requirement for patient informed consent because of the retrospective nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The complete details of author involved in CRDS study Investigators are given in acknowledgements.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 606 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Xie, C., Zhang, Y. et al. Association of serum 25-hydroxyvitamin D with cardiovascular mortality and kidney outcome in patients with early stages of CKD. J Endocrinol Invest (2024). https://doi.org/10.1007/s40618-024-02383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40618-024-02383-6

Keywords

Navigation