Skip to main content

Advertisement

Log in

Epicardial and pericoronary adipose tissue and coronary plaque burden in patients with Cushing’s syndrome: a propensity score-matched study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

To assess coronary inflammation by measuring the volume and density of the epicardial adipose tissue (EAT), perivascular fat attenuation index (FAI) and coronary plaque burden in patients with Cushing’s syndrome (CS) based on coronary computed tomography angiography (CCTA).

Methods

This study included 29 patients with CS and 58 matched patients without CS who underwent CCTA. The EAT volume, EAT density, FAI and coronary plaque burden were measured. The high-risk plaque (HRP) was also evaluated. CS duration from diagnosis, 24-h urinary free cortisol (UFC), and abdominal visceral adipose tissue volume (VAT) of CS patients were recorded.

Results

The CS group had higher EAT volume (146.9 [115.4, 184.2] vs. 119.6 [69.0, 147.1] mL, P = 0.006), lower EAT density (− 78.79 ± 5.89 vs. − 75.98 ± 6.03 HU, P = 0.042), lower FAI (− 84.0 ± 8.92 vs. − 79.40 ± 10.04 HU, P = 0.038), higher total plaque volume (88.81 [36.26, 522.5] vs. 44.45 [0, 198.16] mL, P = 0.010) and more HRP plaques (7.3% vs. 1.8%, P = 0.026) than the controls. The multivariate analysis suggested that CS itself (β [95% CI], 29.233 [10.436, 48.03], P = 0.014), CS duration (β [95% CI], 0.176 [0.185, 4.242], P = 0.033), and UFC (β [95% CI], 0.197 [1.803, 19.719], P = 0.019) were strongly associated with EAT volume but not EAT density, and EAT volume (β [95% CI] − 0.037[− 0.058, − 0.016], P = 0.001) not CS was strongly associated with EAT density. EAT volume, FAI and plaque burden increased (all P < 0.05) in 6 CS patients with follow-up CCTA. The EAT volume had a moderate correlation with abdominal VAT volume (r = 0.526, P = 0.008) in CS patients.

Conclusions

Patients with CS have higher EAT volume and coronary plaque burden but less inflammation as detected by EAT density and FAI. The EAT density is associated with EAT volume but not CS itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Newell-Price J, Bertagna X, Grossman AB et al (2006) Cushing’s syndrome. Lancet 367(9522):1605–1617. https://doi.org/10.1016/S0140-6736(06)68699-6

    Article  CAS  PubMed  Google Scholar 

  2. Valassi E, Biller BM, Klibanski A et al (2012) Adipokines and cardiovascular risk in Cushing’s syndrome. Neuroendocrinology 95(3):187–206. https://doi.org/10.1159/000330416

    Article  CAS  PubMed  Google Scholar 

  3. De Leo M, Pivonello R, Auriemma RS et al (2010) Cardiovascular disease in Cushing’s syndrome: heart versus vasculature. Neuroendocrinology 92(Suppl 1):50–54. https://doi.org/10.1159/000318566

    Article  CAS  PubMed  Google Scholar 

  4. Clayton RN, Jones PW, Reulen RC et al (2016) Mortality in patients with Cushing’s disease more than 10 years after remission: a multicentre, multinational, retrospective cohort study. Lancet Diabetes Endocrinol 4(7):569–576. https://doi.org/10.1016/S2213-8587(16)30005-5

    Article  PubMed  Google Scholar 

  5. Carr DB, Utzschneider KM, Hull RL et al (2004) Intra-abdominal fat is a major determinant of the national cholesterol education program adult treatment panel III criteria for the metabolic syndrome. Diabetes 53(8):2087–2094. https://doi.org/10.2337/diabetes.53.8.2087

    Article  CAS  PubMed  Google Scholar 

  6. Goodpaster BH, Krishnaswami S, Harris TB et al (2005) Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med 165(7):777–783. https://doi.org/10.1001/archinte.165.7.777

    Article  PubMed  Google Scholar 

  7. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444(7121):875–880. https://doi.org/10.1038/nature05487

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Pivonello R, Isidori AM, De Martino MC et al (2016) Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol 4(7):611–629. https://doi.org/10.1016/S2213-8587(16)00086-3

    Article  CAS  PubMed  Google Scholar 

  9. Gitsioudis G, Schmahl C, Missiou A et al (2016) Epicardial adipose tissue is associated with plaque burden and composition and provides incremental value for the prediction of cardiac outcome. A clinical cardiac computed tomography angiography study. PLoS ONE 11(5):e0155120. https://doi.org/10.1371/journal.pone.0155120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Milanese G, Silva M, Ledda RE et al (2020) Validity of epicardial fat volume as biomarker of coronary artery disease in symptomatic individuals: results from the ALTER-BIO registry. Int J Cardiol 314:20–24. https://doi.org/10.1016/j.ijcard.2020.04.031

    Article  PubMed  Google Scholar 

  11. Fitzgibbons TP, Czech MP (2014) Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 3(2):e000582. https://doi.org/10.1161/JAHA.113.000582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oikonomou EK, Marwan M, Desai MY et al (2018) Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 392(10151):929–939. https://doi.org/10.1016/S0140-6736(18)31114-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Monti CB, Capra D, Zanardo M et al (2021) CT-derived epicardial adipose tissue density: systematic review and meta-analysis. Eur J Radiol 143:109902. https://doi.org/10.1016/j.ejrad.2021.109902

    Article  PubMed  Google Scholar 

  14. Geer EB, Shen W, Gallagher D et al (2010) MRI assessment of lean and adipose tissue distribution in female patients with Cushing’s disease. Clin Endocrinol (Oxf) 73(4):469–475. https://doi.org/10.1111/j.1365-2265.2010.03829.x

    Article  PubMed  Google Scholar 

  15. Enzi G, Gasparo M, Biondetti PR et al (1986) Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography. Am J Clin Nutr 44(6):739–746. https://doi.org/10.1093/ajcn/44.6.739

    Article  CAS  PubMed  Google Scholar 

  16. Yener S, Baris M, Peker A et al (2017) Autonomous cortisol secretion in adrenal incidentalomas and increased visceral fat accumulation during follow-up. Clin Endocrinol (Oxf) 87(5):425–432. https://doi.org/10.1111/cen.13408

    Article  CAS  PubMed  Google Scholar 

  17. Wolf P, Marty B, Bouazizi K et al (2021) Epicardial and pericardial adiposity without myocardial steatosis in Cushing syndrome. J Clin Endocrinol Metab 106(12):3505–3514. https://doi.org/10.1210/clinem/dgab556

    Article  PubMed  Google Scholar 

  18. Iacobellis G, Petramala L, Barbaro G et al (2013) Epicardial fat thickness and left ventricular mass in subjects with adrenal incidentaloma. Endocrine 44(2):532–536. https://doi.org/10.1007/s12020-013-9902-5

    Article  CAS  PubMed  Google Scholar 

  19. Nieman LK, Biller BM, Findling JW et al (2008) The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 93(5):1526–1540. https://doi.org/10.1210/jc.2008-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fleseriu M, Auchus R, Bancos I et al (2021) Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol 9(12):847–875. https://doi.org/10.1016/S2213-8587(21)00235-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. D’Agostino RB Sr, Vasan RS, Pencina MJ et al (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753. https://doi.org/10.1161/CIRCULATIONAHA.107.699579

    Article  PubMed  Google Scholar 

  22. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15(4):827–832. https://doi.org/10.1016/0735-1097(90)90282-t

    Article  CAS  PubMed  Google Scholar 

  23. Cury RC, Leipsic J, Abbara S et al (2022) CAD-RADS 2.0 - 2022 coronary artery disease-reporting and data system: an expert consensus document of the society of cardiovascular computed tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 16(6):536–557. https://doi.org/10.1016/j.jcct.2022.07.002

    Article  PubMed  Google Scholar 

  24. Motoyama S, Sarai M, Harigaya H et al (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54(1):49–57. https://doi.org/10.1016/j.jacc.2009.02.068

    Article  PubMed  Google Scholar 

  25. Bauer RW, Thilo C, Chiaramida SA et al (2009) Noncalcified atherosclerotic plaque burden at coronary CT angiography: a better predictor of ischemia at stress myocardial perfusion imaging than calcium score and stenosis severity. AJR Am J Roentgenol 193(2):410–418. https://doi.org/10.2214/AJR.08.1277

    Article  PubMed  Google Scholar 

  26. Antonopoulos AS, Sanna F, Sabharwal N et al (2017) Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aal2658

    Article  PubMed  Google Scholar 

  27. Gaubeta S, Klinghammer L, Jahn D et al (2014) Epicardial fat and coronary artery calcification in patients on long-term hemodialysis. J Comput Assist Tomogr 38(5):768–772. https://doi.org/10.1097/RCT.0000000000000113

    Article  PubMed  Google Scholar 

  28. Kuk JL, Church TS, Blair SN et al (2006) Does measurement site for visceral and abdominal subcutaneous adipose tissue alter associations with the metabolic syndrome? Diabetes Care 29(3):679–684. https://doi.org/10.2337/diacare.29.03.06.dc05-1500

    Article  PubMed  Google Scholar 

  29. Gundogdu E, Emekli E (2022) CT-based abdominal adipose tissue area changes in patients undergoing adrenalectomy due to Cushing’s syndrome and non-functioning adenomas. Exp Clin Endocrinol Diabetes 130(6):368–373. https://doi.org/10.1055/a-1547-9008

    Article  CAS  PubMed  Google Scholar 

  30. Brookhart MA, Schneeweiss S, Rothman KJ et al (2006) Variable selection for propensity score models. Am J Epidemiol 163(12):1149–1156. https://doi.org/10.1093/aje/kwj149

    Article  PubMed  Google Scholar 

  31. Rassen JA, Shelat AA, Myers J et al (2012) One-to-many propensity score matching in cohort studies. Pharmacoepidemiol Drug Saf 21(Suppl 2):69–80. https://doi.org/10.1002/pds.3263

    Article  PubMed  Google Scholar 

  32. Maurice F, Gaborit B, Vincentelli C et al (2018) Cushing syndrome is associated with subclinical LV dysfunction and increased epicardial adipose tissue. J Am Coll Cardiol 72(18):2276–2277. https://doi.org/10.1016/j.jacc.2018.07.096

    Article  PubMed  Google Scholar 

  33. Sacks HS, Fain JN, Holman B et al (2009) Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab 94(9):3611–3615. https://doi.org/10.1210/jc.2009-0571

    Article  CAS  PubMed  Google Scholar 

  34. Ramage LE, Akyol M, Fletcher AM et al (2016) Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab 24(1):130–141. https://doi.org/10.1016/j.cmet.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baba S, Jacene HA, Engles JM et al (2010) CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J Nucl Med 51(2):246–250. https://doi.org/10.2967/jnumed.109.068775

    Article  PubMed  Google Scholar 

  36. Deng J, Guo Y, Yuan F et al (2020) Autophagy inhibition prevents glucocorticoid-increased adiposity via suppressing BAT whitening. Autophagy 16(3):451–465. https://doi.org/10.1080/15548627.2019.1628537

    Article  CAS  PubMed  Google Scholar 

  37. Bao W, Chen C, Yang M et al (2022) A preliminary coronary computed tomography angiography-based study of perivascular fat attenuation index: relation with epicardial adipose tissue and its distribution over the entire coronary vasculature. Eur Radiol 32(9):6028–6036. https://doi.org/10.1007/s00330-022-08781-9

    Article  PubMed  Google Scholar 

  38. Neary NM, Booker OJ, Abel BS et al (2013) Hypercortisolism is associated with increased coronary arterial atherosclerosis: analysis of noninvasive coronary angiography using multidetector computerized tomography. J Clin Endocrinol Metab 98(5):2045–2052. https://doi.org/10.1210/jc.2012-3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goeller M, Tamarappoo BK, Kwan AC et al (2019) Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 20(6):636–643. https://doi.org/10.1093/ehjci/jez013

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tsushima H, Yamamoto H, Kitagawa T et al (2015) Association of epicardial and abdominal visceral adipose tissue with coronary atherosclerosis in patients with a coronary artery calcium score of zero. Circ J 79(5):1084–1091. https://doi.org/10.1253/circj.CJ-14-1169

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the following fundings: Natural Science Foundation of China under Grant: 8217070113. Natural Science Foundation of China under Grant: 82101988. Innovative research team of high-level local universities in Shanghai: SHSMU-ZDCX20210702. Shanghai Sailing Program: 21YF1426200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yang.

Ethics declarations

Conflict of interest

Zhihan Xu is an employee of Siemens Healthineers. The remaining authors declare that they have no conflict of interest with each other.

Human and animal rights

This article does not contain any studies directly involving human participants, as it is a review of data already collected in a Cushing’s Syndrome database.

Informed consent

Our hospital ethic committee approved this retrospective study, and the informed consent forms were waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Qin, L., Bao, W. et al. Epicardial and pericoronary adipose tissue and coronary plaque burden in patients with Cushing’s syndrome: a propensity score-matched study. J Endocrinol Invest (2024). https://doi.org/10.1007/s40618-023-02295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40618-023-02295-x

Keywords

Navigation