Skip to main content

Advertisement

Log in

Combined evaluation of prolactin-induced peptide (PIP) and extracellular signal-regulated kinase (ERK) as new sperm biomarkers of FSH treatment efficacy in normogonadotropic idiopathic infertile men

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Purpose

Nearly, 40% of the causes of male infertility remain idiopathic. The only suggested treatment in idiopathic oligo- and/or asthenozoospermia in normogonadotropic patients is the FSH. In the current clinical practice, efficacy is exclusively assessable through semen analysis after 3 months of treatment. No molecular markers of treatment efficacy are appliable in clinical practice. The aim of the present work is to evaluate the combination of extracellular signal regulated kinase (ERK) 1 and 2 and prolactin inducible peptide (PIP) as potential markers of idiopathic infertility and FSH treatment efficacy.

Methods

Western blot and confocal microscopy were performed to analyze the modulation of PIP and ERK1/2 in idiopathic infertile patients (IIP) sperm cells. Taking advantage of mass spectrometry analysis, we identified these proteins unequivocally in sperm cells.

Results

 We demonstrated a significant decrease of both PIP protein and of ERK1/2 levels in spermatozoa obtained from IIP in comparison to healthy fertile patients (HFP). Conversely, we reported a significant increase of these markers comparing infertile patients before and after 3 months of FSH treatment. Importantly, this correlated with an increase in total number of sperm and sperm motility after FSH treatment. Finally, we identified of PIP and ERK2 proteins in sperm samples by proteomic analysis.

Conclusions

The combined evaluation of ERK1/2 and PIP proteins might represent a useful molecular marker to tailor FSH treatment in the management of male normogonadotropic idiopathic infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Vander Borght M, Wyns C (2018) Fertility and infertility: definition and epidemiology. Clin Biochem 62:2–10. https://doi.org/10.1016/J.CLINBIOCHEM.2018.03.012

    Article  PubMed  Google Scholar 

  2. Garolla A, Pizzol D, Carosso AR et al (2021) Practical clinical and diagnostic pathway for the investigation of the infertile couple. Front Endocrinol (Lausanne) 11:1032. https://doi.org/10.3389/FENDO.2020.591837/BIBTEX

    Article  Google Scholar 

  3. Cousineau TM, Domar AD (2007) Psychological impact of infertility. Best Pract Res Clin Obstet Gynaecol 21:293–308. https://doi.org/10.1016/J.BPOBGYN.2006.12.003

    Article  PubMed  Google Scholar 

  4. Bourrion B, Panjo H, Bithorel PL et al (2022) The economic burden of infertility treatment and distribution of expenditures overtime in France: a self-controlled pre-post study. BMC Health Serv Res 22:1–10. https://doi.org/10.1186/S12913-022-07725-9/FIGURES/3

    Article  Google Scholar 

  5. Kumar N, Singh A (2015) Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci 8:191. https://doi.org/10.4103/0974-1208.170370

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ventimiglia E, Pozzi E, Capogrosso P et al (2021) Extensive assessment of underlying etiological factors in primary infertile men reduces the proportion of men with idiopathic infertility. Front Endocrinol (Lausanne) 12:801125. https://doi.org/10.3389/fendo.2021.801125

    Article  PubMed  Google Scholar 

  7. Ferlin A, Calogero AE, Krausz C et al (2022) Management of male factor infertility: position statement from the Italian Society of andrology and sexual medicine (SIAMS): endorsing organization: Italian society of embryology, reproduction, and research (SIERR). J Endocrinol Invest 45:1085–1113. https://doi.org/10.1007/S40618-022-01741-6

    Article  CAS  PubMed  Google Scholar 

  8. Foresta C, Bettella A, Ferlin A et al (1998) Evidence for a stimulatory role of follicle-stimulating hormone on the spermatogonial population in adult males. Fertil Steril 69:636–642. https://doi.org/10.1016/S0015-0282(98)00008-9

    Article  CAS  PubMed  Google Scholar 

  9. Foresta C, Bettella A, Merico M et al (2002) Use of recombinant human follicle-stimulating hormone in the treatment of male factor infertility. Fertil Steril 77:238–244. https://doi.org/10.1016/S0015-0282(01)02966-1

    Article  PubMed  Google Scholar 

  10. Arnaldi G, Balercia G, Barbatelli G, Mantero F (2000) Effects of long-term treatment with human pure follicle-stimulating hormone on semen parameters and sperm-cell ultrastructure in idiopathic oligoteratoasthenozoospermia. Andrologia 32:155–161. https://doi.org/10.1046/J.1439-0272.2000.00358.X

    Article  CAS  PubMed  Google Scholar 

  11. Ben-Rafael Z, Farhi J, Feldberg D et al (2000) Follicle-stimulating hormone treatment for men with idiopathic oligoteratoasthenozoospermia before in vitro fertilization: the impact on sperm microstructure and fertilization potential. Fertil Steril 73:24–30. https://doi.org/10.1016/S0015-0282(99)00461-6

    Article  CAS  PubMed  Google Scholar 

  12. Muratori M, Baldi E (2018) Effects of FSH on sperm DNA fragmentation: review of clinical studies and possible mechanisms of action. Front Endocrinol (Lausanne) 9:734. https://doi.org/10.3389/FENDO.2018.00734

    Article  PubMed  Google Scholar 

  13. Santi D, Crépieux P, Reiter E et al (2020) Follicle-stimulating hormone (FSH) action on spermatogenesis: a focus on physiological and therapeutic roles. J Clin Med. https://doi.org/10.3390/JCM9041014

    Article  PubMed  PubMed Central  Google Scholar 

  14. Simoni M, Brigante G, Rochira V et al (2020) Prospects for FSH Treatment of male infertility. J Clin Endocrinol Metab. https://doi.org/10.1210/CLINEM/DGAA243

    Article  PubMed  Google Scholar 

  15. Ponce MDR, Foresta C, Rago R et al (2020) Use of biosimilar follicle-stimulating hormone in asthenozoospermic infertile patients: a multicentric study. J Clin Med 9:1478. https://doi.org/10.3390/JCM9051478

    Article  Google Scholar 

  16. Barbonetti A, Calogero AE, Balercia G et al (2018) The use of follicle stimulating hormone (FSH) for the treatment of the infertile man: position statement from the Italian Society of Andrology and Sexual Medicine (SIAMS). J Endocrinol Invest. https://doi.org/10.1007/s40618-018-0843-y

    Article  PubMed  Google Scholar 

  17. Santi D, Granata ARM, Simoni M (2015) FSH treatment of male idiopathic infertility improves pregnancy rate: a meta-analysis. Endocr Connect 4:R46. https://doi.org/10.1530/EC-15-0050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cannarella R, La Vignera S, Condorelli RA et al (2020) FSH dosage effect on conventional sperm parameters: a meta-analysis of randomized controlled studies. Asian J Androl 22:309–316. https://doi.org/10.4103/AJA.AJA_42_19

    Article  CAS  PubMed  Google Scholar 

  19. Attia AM, Abou-Setta AM, Al-Inany HG (2013) Gonadotrophins for idiopathic male factor subfertility. Cochrane database Syst Rev. https://doi.org/10.1002/14651858.CD005071.PUB4

    Article  PubMed  Google Scholar 

  20. Simoni M, Santi D, Negri L et al (2016) Treatment with human, recombinant FSH improves sperm DNA fragmentation in idiopathic infertile men depending on the FSH receptor polymorphism p. N680S: a pharmacogenetic study. Hum Reprod 31:1960–1969. https://doi.org/10.1093/HUMREP/DEW167

    Article  PubMed  Google Scholar 

  21. Grande G, Vincenzoni F, Mancini F et al (2019) Quantitative analysis of the seminal plasma proteome in secondary hypogonadism. J Clin Med 8:2128. https://doi.org/10.3390/JCM8122128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hassan MI, Waheed A, Yadav S et al (2009) Prolactin inducible protein in cancer, fertility and immunoregulation: structure, function and its clinical implications. Cell Mol Life Sci 66:447–459. https://doi.org/10.1007/S00018-008-8463-X

    Article  CAS  PubMed  Google Scholar 

  23. Martínez-Heredia J, de Mateo S, Vidal-Taboada JM et al (2008) Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod 23:783–791. https://doi.org/10.1093/HUMREP/DEN024

    Article  PubMed  Google Scholar 

  24. Arthur JSC, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13:679–692. https://doi.org/10.1038/nri3495

    Article  CAS  PubMed  Google Scholar 

  25. Nan X, Tamgüney TM, Collisson EA et al (2015) Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc Natl Acad Sci USA 112:7996–8001. https://doi.org/10.1073/PNAS.1509123112

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bianchetti G, Taralli S, Vaccaro M et al (2022) Automated detection and classification of tumor histotypes on dynamic PET imaging data through machine-learning driven voxel classification. Comput Biol Med. https://doi.org/10.1016/J.COMPBIOMED.2022.105423

    Article  PubMed  Google Scholar 

  27. Bianchetti G, Di Giacinto F, De Spirito M, Maulucci G (2020) Machine-learning assisted confocal imaging of intracellular sites of triglycerides and cholesteryl esters formation and storage. Anal Chim Acta 1121:57–66. https://doi.org/10.1016/J.ACA.2020.04.076

    Article  CAS  PubMed  Google Scholar 

  28. Berg S, Kutra D, Kroeger T et al (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16:1226–1232. https://doi.org/10.1038/S41592-019-0582-9

    Article  CAS  PubMed  Google Scholar 

  29. Barbonetti A, Calogero AE, Balercia G et al (2018) The use of follicle stimulating hormone (FSH) for the treatment of the infertile man: position statement from the Italian Society of andrology and sexual medicine (SIAMS). J Endocrinol Invest 41:1107–1122. https://doi.org/10.1007/S40618-018-0843-Y

    Article  CAS  PubMed  Google Scholar 

  30. Simoni M, Gromoll J, Nieschlag E (1997) The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 18:739–773. https://doi.org/10.1210/EDRV.18.6.0320

    Article  CAS  PubMed  Google Scholar 

  31. Gloaguen P, Crépieux P, Heitzler D et al (2011) Mapping the follicle-stimulating hormone-induced signaling networks. Front Endocrinol (Lausanne). https://doi.org/10.3389/FENDO.2011.00045

    Article  PubMed  Google Scholar 

  32. Hunzicker-Dunn M, Maizels ET (2006) FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell Signal 18:1351–1359. https://doi.org/10.1016/J.CELLSIG.2006.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Conti AC, Cryan JF, Dalvi A et al (2002) cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci 22:3262–3268. https://doi.org/10.1523/JNEUROSCI.22-08-03262.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Casarini L, Crépieux P (2019) Molecular mechanisms of action of FSH. Front Endocrinol (Lausanne) 10:305. https://doi.org/10.3389/FENDO.2019.00305/BIBTEX

    Article  PubMed  Google Scholar 

  35. Garrido N, Martínez-Conejero JA, Jauregui J et al (2009) Microarray analysis in sperm from fertile and infertile men without basic sperm analysis abnormalities reveals a significantly different transcriptome. Fertil Steril 91:1307–1310. https://doi.org/10.1016/J.FERTNSTERT.2008.01.078

    Article  CAS  PubMed  Google Scholar 

  36. Bansal SK, Gupta N, Sankhwar SN, Rajender S (2015) Differential genes expression between fertile and infertile spermatozoa revealed by transcriptome analysis. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0127007

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cui L, Fang L, Shi B et al (2018) Spermatozoa expression of piR-31704, piR-39888, and piR-40349 and their correlation to sperm concentration and fertilization rate after ICSI. Reprod Sci 25:733–739. https://doi.org/10.1177/1933719117725822/METRICS

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal A, Parekh N, Selvam MKP et al (2019) Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Mens Health 37:296. https://doi.org/10.5534/WJMH.190055

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bruno C, Basile U, Vergani E et al (2022) Inflammation and oxidative stress in seminal plasma: search for biomarkers in diagnostic approach to male infertility. J Pers Med. https://doi.org/10.3390/JPM12060857

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mongioì LM, Condorelli RA, Alamo A et al (2020) Follicle-stimulating hormone treatment and male idiopathic infertility: effects on sperm parameters and oxidative stress indices according to FSHR c. 2039 A/G and c. -29 G/A genotypes. J Clin Med. https://doi.org/10.3390/JCM9061690

    Article  PubMed  PubMed Central  Google Scholar 

  41. Milardi D, Grande G, Vincenzoni F et al (2014) Novel biomarkers of androgen deficiency from seminal plasma profiling using high-resolution mass spectrometry. J Clin Endocrinol Metab 99:2813–2820. https://doi.org/10.1210/JC.2013-4148

    Article  CAS  PubMed  Google Scholar 

  42. Buscà R, Pouysségur J, Lenormand P (2016) ERK1 and ERK2 map kinases: Specific roles or functional redundancy? Front Cell Dev Biol 4:53. https://doi.org/10.3389/FCELL.2016.00053/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  43. Almog T, Lazar S, Reiss N et al (2008) Identification of extracellular signal-regulated kinase 1/2 and p38 MAPK as regulators of human sperm motility and acrosome reaction and as predictors of poor spermatozoan quality. J Biol Chem 283:14479–14489. https://doi.org/10.1074/JBC.M710492200

    Article  CAS  PubMed  Google Scholar 

  44. Almog T, Naor Z (2008) Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions. Mol Cell Endocrinol 282:39–44. https://doi.org/10.1016/J.MCE.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  45. Almog T, Naor Z (2010) The role of mitogen activated protein kinase (MAPK) in sperm functions. Mol Cell Endocrinol 314:239–243. https://doi.org/10.1016/J.MCE.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  46. Li MWM, Mruk DD, Cheng CY (2009) Mitogen-activated protein kinases in male reproductive function. Trends Mol Med 15:159–168. https://doi.org/10.1016/J.MOLMED.2009.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dahia CL, Rao AJ (2006) Demonstration of follicle-stimulating hormone receptor in cauda epididymis of rat. Biol Reprod 75:98–106. https://doi.org/10.1095/BIOLREPROD.105.047704

    Article  CAS  PubMed  Google Scholar 

  48. Świder-Al-Amawi M, Kolasa A, Sikorski A et al (2010) The immunoexpression of FSH-R in the ductuli efferentes and the epididymis of men and rat: effect of FSH on the morphology and steroidogenic activity of rat epididymal epithelial cells in vitro. J Biomed Biotechnol. https://doi.org/10.1155/2010/506762

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sullivan R (2016) Epididymosomes: role of extracellular microvesicles in sperm maturation. Front Biosci (Schol Ed) 8:106–114. https://doi.org/10.2741/S450

    Article  PubMed  Google Scholar 

  50. Sullivan R, Mieusset R (2016) The human epididymis: its function in sperm maturation. Hum Reprod Update 22:574–587. https://doi.org/10.1093/HUMUPD/DMW015

    Article  CAS  PubMed  Google Scholar 

  51. da Juliano SC, de Ávila ACFCM, Garrett HL et al (2018) Cell-secreted vesicles containing microRNAs as regulators of gamete maturation. J Endocrinol 236:R15–R27. https://doi.org/10.1530/JOE-17-0200

    Article  Google Scholar 

  52. Recchia K, Jorge AS, de Pessôa FLV et al (2021) Actions and roles of FSH in germinative cells. Int J Mol Sci 22:10110. https://doi.org/10.3390/IJMS221810110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baccetti B, Collodel G, Costantino-Ceccarini E et al (1998) Localization of human follicle-stimulating hormone in the testis. FASEB J 12:1045–1054. https://doi.org/10.1096/FASEBJ.12.11.1045

    Article  CAS  PubMed  Google Scholar 

  54. Panza S, Giordano F, De Rose D et al (2020) FSH-R human early male genital tract, testicular tumors and sperm: its involvement in testicular disorders. Life 10:1–19. https://doi.org/10.3390/LIFE10120336

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alessia Mahoney, University of Cardiff, Cardiff, United Kingdom for her kind and careful English editing.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FM, FDN and DM; methodology, FM, FDN and ET; validation, GB, FI, DM and FM; formal analysis, GB, FI and ET; investigation, FM, FDN; data curation, FM, FI, GG and FDN; writing—original draft preparation, FM, FDN, EV and DM; writing—review and editing, CB, EV, ET and AU; visualization, AP, AU, GM, GG and MDS; supervision, DM, AU and AP. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to F. Mancini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

The study was carried out following the principles and the guidelines of the Declaration of Helsinki (version 2013) and all subjects gave written.

Informed consent

Sperm collection and analysis was approved by the Fondazione Policlinico Universitario A. Gemelli, IRCCS, local ethics committee (ID 3943).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 413 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancini, F., Di Nicuolo, F., Teveroni, E. et al. Combined evaluation of prolactin-induced peptide (PIP) and extracellular signal-regulated kinase (ERK) as new sperm biomarkers of FSH treatment efficacy in normogonadotropic idiopathic infertile men. J Endocrinol Invest 47, 455–468 (2024). https://doi.org/10.1007/s40618-023-02161-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02161-w

Keywords

Navigation