Skip to main content

Advertisement

Log in

The effect of chronic high-intensity interval training programs on glycaemic control, aerobic resistance, and body composition in type 2 diabetic patients: a meta-analysis

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Type 2 diabetes is an increasing health problem worldwide. HIIT has been proposed as an exercise alternative to be part of integral type 2 diabetes treatment.

Objective

The aim of this meta-analysis was to determine the effect of different types of chronic HIIT on glycaemic control, aerobic resistance, and body composition in individuals above 18 years with T2D.

Design

This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement and was registered with PROSPERO on November 21st, 2021.

Data sources

A systematic literature search of the following databases: EbscoHost (Academic Search Ultimate, Fuente Académica Plus, MEDline and SportDiscus), Web of Science, PubMed, and EMBASE between April of 2021 and April of 2023 was conducted.

Eligibility criteria for selecting studies

Eligibility criteria included (1) participants aged ≥ 18 years with a diagnosis of type 2 diabetes, (2) an HIIT protocol with detailed description, (3) control group and/or continuous aerobic training comparison group, (4) report of pre-test and post-test values for at least one of the studied variables (from glycaemic control, aerobic resistance, and/or body composition), and (5) experimental or quasi-experimental intervention design.

Analyses

Meta-analysis was made by a pre–post-test between-group analysis following the inverse variance heterogeneity model for each variable, and then, a subgroup analysis by type of HIIT was conducted.

Results

Of the 2817 records obtained, 180 records were included for meta-analysis. Significant improvements were found in the most part of the variables when HIIT was compared to control group, while fat-free mass kept without changes. HIIT vs. continuous aerobic training results showed and advantage in favor of HIIT for fasting blood glycemia. Subgroup analysis refers a possible advantage of SI-HIIT and SIT-HIIT in the improvement of fasting glycemia and SIT-HIIT advantage in HOMA 1-IR decrease.

Conclusions

HIIT improves glycaemic control, aerobic resistance, and % fat and waist circumference, and kept fat-free mass unchanged in individuals with T2D. SI-HIIT and SIT-HIIT could be better than the other types of HIIT. HIIT benefit is similar to continuous aerobic training except for fasting blood glycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article (and in the electronic supplementary material).

References

  1. International Diabetes Federation. Diabetes, facts and figures. 2021. Available from: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.

  2. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol [Internet] 14(2):88–98

    Article  PubMed  Google Scholar 

  3. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB et al (2020) Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci [Internet] 21(17):6275

    Article  CAS  PubMed  Google Scholar 

  4. Solís-Ramírez, MI Se incrementó la población diabética en Costa Rica. 2019. Available from https://www.ccss.sa.cr/noticias/salud_noticia?se-incremento-la-poblacion-diabetica-en-costa-rica.

  5. Shetty S, Kumari S (2021) Fatty acids and their role in type-2 diabetes (review). Exp Ther Med [Internet] 22(1):706. https://doi.org/10.3892/etm.2021.10138

    Article  CAS  PubMed  Google Scholar 

  6. Zhu Y, Zhang C (2016) Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. Curr Diab Rep [Internet] 16(1):7. https://doi.org/10.1007/s11892-015-0699-x

    Article  CAS  PubMed  Google Scholar 

  7. Versace VL, Beks H, Wesley H, McNamara K, Hague W, Anjana RM et al (2020) Metformin for preventing type 2 diabetes mellitus in women with a previous diagnosis of gestational diabetes: a narrative review. Semin Reprod Med [Internet] 38(06):366–376. https://doi.org/10.1055/s-0041-1727203

    Article  CAS  PubMed  Google Scholar 

  8. Arora A, Behl T, Sehgal A, Singh S, Sharma N, Bhatia S et al (2021) Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci [Internet] 273:119311

    Article  CAS  PubMed  Google Scholar 

  9. Chadt A, Al-Hasani H (2020) Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflügers Arch Eur J Physiol [Internet] 472(9):1273–1298. https://doi.org/10.1007/s00424-020-02417-x

    Article  CAS  Google Scholar 

  10. Kahn C, Ferris H, O’Neill B (2020) Pathophysiology of type 2 Diabetes Mellitus. In: Melmed S, Auchus R, Goldfine A, Koening R, Rosen S (eds) Williams Textbook of Endocrinology, 14th edn. Elsevier, pp 1349–1370

  11. Silva Rosa SC, Nayak N, Caymo AM, Gordon JW (2020) Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol Rep [Internet]. https://doi.org/10.14814/phy2.14607

    Article  PubMed  Google Scholar 

  12. White MF, Kahn CR (2021) Insulin action at a molecular level—100 years of progress. Mol Metab [Internet] 52:101304

    Article  CAS  PubMed  Google Scholar 

  13. Riddle M, Ahmann A (2020) Therapeutics of type 2 Diabetes Mellitus. In: Melmed S, Auchus R, Goldfine A, Koening R, Rosen S (eds) Williams Textbook of Endocrinology, 14th edn. Elsevier, pp 1371–1402

  14. American Diabetes Association (2021) Introduction: standards of medical care in diabetes—2021. Diabetes Care [Internet] 44(Supplement_1):S1-2

    Article  Google Scholar 

  15. American College of Sports Medicine (2021) ACSM’s guidelines for exercise testing and prescription. Wolters Kluwer

  16. De Nardi AT, Tolves T, Lenzi TL, Signori LU, da Silva AMV (2018) High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract [Internet] 137:149–159

    Article  PubMed  Google Scholar 

  17. da Silva DE, Grande AJ, Roever L, Tse G, Liu T, Biondi-Zoccai G et al (2019) High-intensity interval training in patients with type 2 diabetes mellitus: a systematic review. Curr Atheroscler Rep [Internet] 21(2):8. https://doi.org/10.1007/s11883-019-0767-9

    Article  CAS  PubMed  Google Scholar 

  18. Wormgoor SG, Dalleck LC, Zinn C, Harris NK (2017) Effects of high-intensity interval training on people living with type 2 diabetes: a narrative review. Can J Diabetes [Internet] 41(5):536–547

    Article  PubMed  Google Scholar 

  19. de Oliveira TG, da Silva CS, Rezende VR, Rebelo ACS (2022) Acute effects of high-intensity interval training on diabetes mellitus: a systematic review. Int J Environ Res Public Health [Internet] 19(12):7049

    Article  Google Scholar 

  20. Lora-Pozo, Lucena-Anton, Salazar, Galán-Mercant, Moral-Munoz (2019) Anthropometric, cardiopulmonary and metabolic benefits of the high-intensity interval training versus moderate, low-intensity or control for type 2 diabetes: systematic review and meta-analysis. Int J Environ Res Public Health [Internet] 16(22):4524

    Article  PubMed  Google Scholar 

  21. Qiu S, Cai X, Sun Z, Zügel M, Steinacker JM, Schumann U (2017) Aerobic interval training and cardiometabolic health in patients with type 2 diabetes: a meta-analysis. Front Physiol [Internet]. https://doi.org/10.3389/fphys.2017.00957/full

    Article  PubMed  Google Scholar 

  22. Brondani-de Mello M, Camponogara-Righi N, Barreto-Schuch F, Ulisses-Signori L, Vargas-da Silva AM (2022) Effect of high-intensity interval training protocols on VO2max and HbA1c level in people with type 2 diabetes: a systematic review and meta-analysis. Ann Phys Rehabil Med [Internet] 65(5):101586

    Article  PubMed  Google Scholar 

  23. Liu J, Zhu L, Li P, Li N, Xu Y (2019) Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis. Aging Clin Exp Res [Internet] 31(5):575–593. https://doi.org/10.1007/s40520-018-1012-z

    Article  PubMed  Google Scholar 

  24. Arrieta-Leandro M, Hernández-Elizondo J, Jiménez-Díaz J (2023) Effect of chronic high intensity interval training on glycosylated haemoglobin in people with type 2 diabetes: a meta-analysis. Hum Mov [Internet]. https://doi.org/10.5114/hm.2023.107247

    Article  Google Scholar 

  25. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012

    Article  PubMed  Google Scholar 

  26. Smart NA, Waldron M, Ismail H, Giallauria F, Vigorito C, Cornelissen V et al (2015) Validation of a new tool for the assessment of study quality and reporting in exercise training studies. Int J Evid Based Healthc [Internet] 13(1):9–18

    Article  PubMed  Google Scholar 

  27. Furuya-Kanamori L, Barendregt JJ, Doi SAR (2018) A new improved graphical and quantitative method for detecting bias in meta-analysis. Int J Evid Based Healthc [Internet] 16(4):195–203

    Article  PubMed  Google Scholar 

  28. Kelley GA, Kelley KS, Callahan LF (2017) Community-deliverable exercise and anxiety in adults with arthritis and other rheumatic diseases: a protocol for a systematic review and meta-analysis of randomised controlled trials. BMJ Open [Internet] 7(3):e014957. https://doi.org/10.1136/bmjopen-2016-014957

    Article  PubMed  Google Scholar 

  29. Barendregt J (2016) MetaXL, versión 5.3. Available from: https://www.epigear.com/index_files/metaxl.html

  30. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ [Internet] 349(jan02 1):g7647–g7647. https://doi.org/10.1136/bmj.g7647

    Article  Google Scholar 

  31. Doi SAR, Barendregt JJ, Khan S, Thalib L, Williams GM (2015) Advances in the meta-analysis of heterogeneous clinical trials I: the inverse variance heterogeneity model. Contemp Clin Trials [Internet] 45:130–138

    Article  PubMed  Google Scholar 

  32. Wen D, Utesch T, Wu J, Robertson S, Liu J, Hu G et al (2019) Effects of different protocols of high intensity interval training for VO2max improvements in adults: a meta-analysis of randomised controlled trials. J Sci Med Sport [Internet] 22(8):941–947

    Article  PubMed  Google Scholar 

  33. The Cochrane Collaboration (2020) Review Manager (RevMan) [Computer programme]. Version 5.4.

  34. Abdelbasset WK, Tantawy SA, Kamel DM, Alqahtani BA, Soliman GS (2019) A randomized controlled trial on the effectiveness of 8-week high-intensity interval exercise on intrahepatic triglycerides, visceral lipids, and health-related quality of life in diabetic obese patients with nonalcoholic fatty liver disease. Medicine (Baltimore) [Internet] 98(12):e14918

    Article  CAS  Google Scholar 

  35. * Abdi S, Tadibi V, Sheikholeslami-Vatani D. Effect of High-intensity Interval Training on Endothelial Function in Type 2 Diabetic Females. Asian J Sports Med [Internet]. 2021 Sep 14;12(4). Available from: https://brief.land/asjsm/articles/113566.html.

  36. Ahmed AS, Ahmed M, Mahmoud WS, Abdelbasset WK, Elnaggar RK (2019) Effect of high intensity interval training on heart rate variability and aerobic capacity in obese a dults with type 2 diabetes Mellitus. Biosci Res 16(3):2450–2458

    Google Scholar 

  37. Cassidy S, Thoma C, Hallsworth K, Parikh J, Hollingsworth KG, Taylor R et al (2016) High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia [Internet] 59(1):56–66. https://doi.org/10.1007/s00125-015-3741-2

    Article  CAS  PubMed  Google Scholar 

  38. Cassidy S, Vaidya V, Houghton D, Zalewski P, Seferovic JP, Hallsworth K et al (2019) Unsupervised high-intensity interval training improves glycaemic control but not cardiovascular autonomic function in type 2 diabetes patients: a randomised controlled trial. Diabetes Vasc Dis Res [Internet] 16(1):69–76. https://doi.org/10.1177/1479164118816223

    Article  CAS  Google Scholar 

  39. Dünnwald T, Melmer A, Gatterer H, Salzmann K, Ebenbichler C, Burtscher M et al (2019) Supervised short-term high-intensity training on plasma irisin concentrations in type 2 diabetic patients. Int J Sports Med [Internet] 40(03):158–164. https://doi.org/10.1055/a-0828-8047

    Article  CAS  PubMed  Google Scholar 

  40. Elsisi HF, Aneisb YM, Mounirc KM (2015) Impact of high-intensity interval training on HbA1c in patients with type 2 diabetes mellitus. Bull Fac Phys Ther 20(2):168–175

    Article  Google Scholar 

  41. Gentil P, Silva LRBe, Antunes DE, Carneiro LB, de Lira CAB, Batista G et al (2023) The effects of three different low-volume aerobic training protocols on cardiometabolic parameters of type 2 diabetes patients: a randomized clinical trial. Front Endocrinol (Lausanne) 14(January):1–9

    Google Scholar 

  42. Ghardashi-Afousi A, Davoodi M, Hesamabadi BK, Asvadi-Fard M, Bigi MAB, Izadi MR et al (2019) Improved carotid intima-media thickness-induced high-intensity interval training associated with decreased serum levels of Dkk-1 and sclerostin in type 2 diabetes. J Diabetes Complicat [Internet] 34(1):107469

    Article  Google Scholar 

  43. Hollekim-Strand SM, Bjørgaas MR, Albrektsen G, Tjønna AE, Wisløff U, Ingul CB (2014) High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction. J Am Coll Cardiol [Internet] 64(16):1758–1760

    Article  PubMed  Google Scholar 

  44. Hwang C-L, Lim J, Yoo J-K, Kim H-K, Hwang M-H, Handberg EM et al (2019) Effect of all-extremity high-intensity interval training vs. moderate-intensity continuous training on aerobic fitness in middle-aged and older adults with type 2 diabetes: a randomized controlled trial. Exp Gerontol [Internet] 116:46–53

    Article  PubMed  Google Scholar 

  45. Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK et al (2013) The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients. Diabetes Care [Internet] 36(2):228–236

    Article  PubMed  Google Scholar 

  46. Rasmusen-Faria F, Oliveira-Silva I, Martins-Cunha R, Alves-Marques V, Silva-Rebelo AC (2021) No titlechronic effects of metabolic and autonomic cardiac modulation of long or short high-intensity interval training in type 2 diabetics: preliminary results. J Exerc Physiol Online 24(1):73–84

    Google Scholar 

  47. Sabag A, Way KL, Sultana RN, Keating SE, Gerofi JA, Chuter VH et al (2020) The effect of a novel low-volume aerobic exercise intervention on liver fat in type 2 diabetes: a randomized controlled trial. Diabetes Care [Internet] 43(10):2371–2378

    Article  CAS  PubMed  Google Scholar 

  48. Sokolovska J, Ostrovska K, Pahirko L, Varblane G, Krilatiha K, Cirulnieks A et al (2020) Impact of interval walking training managed through smart mobile devices on albuminuria and leptin/adiponectin ratio in patients with type 2 diabetes. Physiol Rep [Internet]. https://doi.org/10.14814/phy2.14506

    Article  PubMed  Google Scholar 

  49. Støa EM, Meling S, Nyhus L-K, Strømstad G, Mangerud KM, Helgerud J et al (2017) High-intensity aerobic interval training improves aerobic fitness and HbA1c among persons diagnosed with type 2 diabetes. Eur J Appl Physiol [Internet] 117(3):455–467. https://doi.org/10.1007/s00421-017-3540-1

    Article  CAS  PubMed  Google Scholar 

  50. Way KL, Sabag A, Sultana RN, Baker MK, Keating SE, Lanting S et al (2020) The effect of low-volume high-intensity interval training on cardiovascular health outcomes in type 2 diabetes: a randomised controlled trial. Int J Cardiol [Internet] 320:148–154

    Article  PubMed  Google Scholar 

  51. Aguilera Eguía RA, Russell Guzmán JA, Soto Muñoz ME, Villegas González BE, Poblete Aro CE, Ibacache PA (2015) Effect of high-intensity interval training on the reduction of glycosylated hemoglobin in type-2 diabetic adult patients. Medwave [Internet] 15(02):e6079–e6079

    Article  PubMed  Google Scholar 

  52. Alvarez C, Ramirez-Campillo R, Martinez-Salazar C, Mancilla R, Flores-Opazo M, Cano-Montoya J et al (2016) Low-volume high-intensity interval training as a therapy for type 2 diabetes. Int J Sports Med [Internet] 37(09):723–729. https://doi.org/10.1055/s-0042-104935

    Article  CAS  PubMed  Google Scholar 

  53. Arefirad T, Shakeri N, Ebrahim K, Nasli-Esfahani E (2020) Effects of interval training on cardio metabolic risk factors and nitric oxide in type 2 diabetes patients: a randomized controlled trial. J Diabetes Metab Disord [Internet] 19(2):669–674. https://doi.org/10.1007/s40200-019-00486-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cassidy S, Thoma C, Hallsworth D, Jakovljevic J, Parikh K, Hollingsworth R et al (2014) High intensity intermittent exercise reverses abnormal cardiac function in people with type 2 diabetes: an MRI/S study. Diabetologia [Internet] 57(S1):S258. https://doi.org/10.1007/s00125-014-3355-0

    Article  Google Scholar 

  55. Elsisi HFE, Albady GM, Mohammed MA, Rahmy AF (2016) Insulin resistance and nitric oxide response to low volume high intensity interval exercise versus continuous moderate intensity aerobic exercise in type 2 diabetes mellitus. Int J Ther Rehabil Res [Internet] 5(1):15–22

    Google Scholar 

  56. Findikoglu G, Altinkapak A, Yaylali GF (2023) Is isoenergetic high-intensity interval exercise superior to moderate-intensity continuous exercise for cardiometabolic risk factors in individuals with type 2 diabetes mellitus? A single-blinded randomized controlled study. Eur J Sport Sci [Internet]. https://doi.org/10.1080/17461391.2023.2167238

    Article  PubMed  Google Scholar 

  57. Ghardashi Afousi A, Izadi MR, Rakhshan K, Mafi F, Biglari S, Gandomkar BH (2018) Improved brachial artery shear patterns and increased flow-mediated dilatation after low-volume high-intensity interval training in type 2 diabetes. Exp Physiol [Internet] 103(9):1264–1276. https://doi.org/10.1113/EP087005

    Article  CAS  PubMed  Google Scholar 

  58. Golshan H, Abbasi H (2019) Effect of different HIIT protocols on the glycemic control and lipids profile in men with type 2 diabetes: a randomize control trial. Iran J Diabetes Obes [Internet] 11(2):112–121

    Google Scholar 

  59. Kazemi N, Afrasyabi S, Mohamadi Zadeh MA (2022) The effects of high intensity interval training induced H2O2, Nrf2 changes on antioxidants factors in type 2 diabetes. J Diabetes Metab Disord [Internet]. https://doi.org/10.1007/s40200-022-01128-7

    Article  PubMed  Google Scholar 

  60. Li J, Cheng W, Ma H (2022) A comparative study of health efficacy indicators in subjects with T2DM applying power cycling to 12 weeks of low-volume high-intensity interval training and moderate-intensity continuous training. Migdalis I, editor. J Diabetes Res [Internet] 2022:1–13

    Google Scholar 

  61. Macias Cervantes MH, Casillas LG, Garay-Sevilla ME, Figueroa A, Zarate E, Guerrero A (2017) Metabolic changes after two differents exercise programs in sedentary type 2 diabetic patients. Med Sci Sport Exerc [Internet] 49(5S):1020

    Article  Google Scholar 

  62. Mitranun W, Deerochanawong C, Tanaka H, Suksom D (2014) Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports [Internet] 24(2):e69-76. https://doi.org/10.1111/sms.12112

    Article  CAS  PubMed  Google Scholar 

  63. Mortensen SP, Winding KM, Iepsen UW, Munch GW, Marcussen N, Hellsten Y et al (2019) The effect of two exercise modalities on skeletal muscle capillary ultrastructure in individuals with type 2 diabetes. Scand J Med Sci Sports [Internet] 29(3):360–368. https://doi.org/10.1111/sms.13348

    Article  PubMed  Google Scholar 

  64. Sabouri M, Hatami E, Pournemati P, Shabkhiz F (2021) Inflammatory, antioxidant and glycemic status to different mode of high-intensity training in type 2 diabetes mellitus. Mol Biol Rep [Internet] 48(6):5291–5304. https://doi.org/10.1007/s11033-021-06539-y

    Article  CAS  PubMed  Google Scholar 

  65. Saghand MR, Rajabi H, Dehkhoda M, Hoseini A (2020) The effects of eight weeks high-intensity interval training vs. continuous moderate-intensity training on plasma dickkopf-1 and glycemic control in patients with type 2 diabetes. Ann Appl Sport Sci 8(2):1–7

    Google Scholar 

  66. Van Ryckeghem L, Keytsman C, De Brandt J, Verboven K, Verbaanderd E, Marinus N et al (2022) Impact of continuous vs interval training on oxygen extraction and cardiac function during exercise in type 2 diabetes mellitus. Eur J Appl Physiol [Internet] 122(4):875–887. https://doi.org/10.1007/s00421-022-04884-9

    Article  CAS  PubMed  Google Scholar 

  67. Wilson GA, Wilkins GT, Cotter JD, Lamberts RR, Lal S, Baldi JC (2019) HIIT improves left ventricular exercise response in adults with type 2 diabetes. Med Sci Sport Exerc [Internet] 51(6):1099–1105

    Article  Google Scholar 

  68. Winding KM, Munch GW, Iepsen UW, Van Hall G, Pedersen BK, Mortensen SP (2018) The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. Diabetes Obes Metab [Internet] 20(5):1131–1139. https://doi.org/10.1111/dom.13198

    Article  CAS  PubMed  Google Scholar 

  69. Ghaedi H, Takesh S, Banitalebi E (2020) The effects of personalized sprint interval training and combined aerobic endurance and resistance training on insulin resistance and glycated hemoglobin in women with type 2 diabetes. J Shahrekord Univ Med Sci [Internet] 22(3):113–120

    Article  Google Scholar 

  70. Asrami AT, Ghaedi H, Banitalebi E (2019) Effects of high intensity interval training and combined training on serum apelin levels and pancreatic β-cell function in overweight type 2 diabetes women. Iran J Diabetes Obes 10(4):178–186

    Google Scholar 

  71. Baasch-Skytte T, Lemgart CT, Oehlenschläger MH, Petersen PE, Hostrup M, Bangsbo J et al (2020) Efficacy of 10–20-30 training versus moderate-intensity continuous training on HbA1c, body composition and maximum oxygen uptake in male patients with type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab [Internet] 22(5):767–778. https://doi.org/10.1111/dom.13953

    Article  CAS  PubMed  Google Scholar 

  72. Banitalebi E, Mardaniyan Ghahfarrokhi M, Faramarzi M, Nasiri S (2019) The effects of 10-week different exercise interventions on Framingham risk score and metabolic syndrome severity scores in overweight women with type 2 diabetes. J Shahrekord Univ Med Sci [Internet] 21(1):1–8

    Google Scholar 

  73. Kaviani M, Banitalebi E, Abbasi A (2017) P652 The effects of two exercise therapy methods on cardio-metabolic risk factors in diabetic overweight middle-aged females. Eur Heart J [Internet]. https://doi.org/10.1093/eurheartj/ehx501.P652

    Article  Google Scholar 

  74. Maillard F, Rousset S, Pereira B, Traore A, de Pradel Del Amaze P, Boirie Y et al (2016) High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes Metab [Internet] 42(6):433–441

    Article  CAS  PubMed  Google Scholar 

  75. Sabag A, Little JP, Johnson NA (2021) Low-volume high-intensity interval training for cardiometabolic health. J Physiol [Internet] 600(5):1013–1026. https://doi.org/10.1113/JP281210

    Article  CAS  PubMed  Google Scholar 

  76. Kirwan JP, Sacks J, Nieuwoudt S (2017) The essential role of exercise in the management of type 2 diabetes. Cleve Clin J Med [Internet] 84(7 suppl 1):S15-21. https://doi.org/10.3949/ccjm.84.s1.03

    Article  PubMed  Google Scholar 

  77. Jiménez-Maldonado A, García-Suárez PC, Rentería I, Moncada-Jiménez J, Plaisance EP (2020) Impact of high-intensity interval training and sprint interval training on peripheral markers of glycemic control in metabolic syndrome and type 2 diabetes. Biochim Biophys Acta Mol Basis Dis [Internet] 1866(8):165820

    Article  PubMed  Google Scholar 

  78. Sgrò P, Emerenziani GP, Antinozzi C, Sacchetti M, Di Luigi L (2021) Exercise as a drug for glucose management and prevention in type 2 diabetes mellitus. Curr Opin Pharmacol [Internet] 59:95–102

    Article  PubMed  Google Scholar 

  79. Chen C-Y, Chou C-C, Lin K-X, Mündel T, Chen M-T, Liao Y-H et al (2022) A sports nutrition perspective on the impacts of hypoxic high-intensity interval training (HIIT) on appetite regulatory mechanisms: a narrative review of the current evidence. Int J Environ Res Public Health [Internet] 19(3):1736

    Article  PubMed  Google Scholar 

  80. Hopkins M, Beaulieu K, Finlayson G (2020) Psychobiology of appetite and food reward in adults with type 1 and type 2 diabetes: is there a role for exercise? Can J Diabetes [Internet] 44(8):768–774

    Article  PubMed  Google Scholar 

  81. Gibala MJ, Little JP, MacDonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol [Internet] 590(5):1077–1084. https://doi.org/10.1113/jphysiol.2011.224725

    Article  CAS  PubMed  Google Scholar 

  82. Feraco A, Gorini S, Armani A, Camajani E, Rizzo M, Caprio M (2021) Exploring the role of skeletal muscle in insulin resistance: lessons from cultured cells to animal models. Int J Mol Sci [Internet] 22(17):9327

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No extra funding was used to this project. It was part of a master’s program.

Author information

Authors and Affiliations

Authors

Contributions

MCAL participated in the meta-analysis design, wrote and edited significant sections of the manuscript, ran the literature search, screened all identified studies based in title and abstract, made the full-text screening, and assisted in the risk of bias assessment, data extraction, and meta-analyses process. JMJ contributed to statistical design and meta-analysis model, quality assessment scale, and article screening in foreign languages, and wrote significant sections of the manuscript. MGMS contributed to theoretical background of the study, meta-analysis design proposal, and interpretation of the results with physiological explanation of the outcomes obtained. JHE participated in meta-analysis design and data extraction, and also contributed to decision making when information was not clear, and she supervised the entire process. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to M. C. Arrieta-Leandro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest relevant to the content of this review.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 294 KB)

Supplementary file2 (DOCX 655 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrieta-Leandro, M.C., Moncada-Jiménez, J., Morales-Scholz, M.G. et al. The effect of chronic high-intensity interval training programs on glycaemic control, aerobic resistance, and body composition in type 2 diabetic patients: a meta-analysis. J Endocrinol Invest 46, 2423–2443 (2023). https://doi.org/10.1007/s40618-023-02144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02144-x

Keywords

Navigation