Skip to main content
Log in

Independent association of hypovitaminosis d with non-alcoholic fatty liver disease in people with chronic spinal cord injury: a cross-sectional study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Non-alcoholic fatty liver disease (NAFLD) and hypovitaminosis D are highly prevalent in people with spinal cord injury (SCI) and could exert an unfavorable influence on cardiovascular profile and rehabilitation outcomes. We aimed to assess the independent association between low 25-hydroxy vitamin D (25(OH)D) levels and NAFLD in people with chronic (> 1 year) SCI.

Methods

One hundred seventy-three consecutive patients with chronic SCI (132 men and 41 women) admitted to a rehabilitation program underwent clinical/biochemical evaluations and liver ultrasonography.

Results

NAFLD was found in 105 patients (60.7% of the study population). They were significantly older and exhibited a poorer leisure time physical activity (LTPA) and functional independence in activities of daily living, a greater number of comorbidities and a higher prevalence of metabolic syndrome (MetS) and its correlates, including lower HDL and higher values of body mass index (BMI), systolic blood pressure, HOMA-index of insulin resistance and triglycerides. 25(OH)D levels were significantly lower in NAFLD (median: 10.6 ng/ml, range: 2.0–31.0) than in non-NAFLD group (22.5 ng/ml, 4.2–51.6). When all these variables were included in a multiple logistic regression analysis, a significant independent association with NAFLD only persisted for lower 25(OH)D levels, a greater number of comorbidities and a poorer LTPA. The ROC analysis revealed that 25(OH)D levels < 18.25 ng/ml discriminated patients with NAFLD with a sensitivity of 89.0% and a specificity of 73.0% (AUC: 85.7%; 95%CI: 79.6–91.7%). NAFLD was exhibited by 83.9% of patients with 25(OH)D levels < 18.25 ng/ml and by 18% of those with 25(OH)D levels ≥ 18.25 ng/ml (p < 0.0001).

Conclusion

In people with chronic SCI, 25(OH)D levels < 18.25 ng/ml may represent a marker of NAFLD independent of MetS-related features. Further studies are warranted to define the cause-effect relationships of this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Angulo P, Lindor KD (2002) Non-alcoholic fatty liver disease. J Gastroenterol Hepatol 17(Suppl):S186–S190. https://doi.org/10.1046/j.1440-1746.17.s1.10.x

    Article  PubMed  Google Scholar 

  2. Medina J, Fernández-Salazar LI, García-Buey L, Moreno-Otero R (2004) Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis. Diabetes Care 27(8):2057–2066. https://doi.org/10.2337/diacare.27.8.2057

    Article  PubMed  Google Scholar 

  3. Targher G, Day CP, Bonora E (2010) Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 363(14):1341–1350. https://doi.org/10.1056/NEJMra0912063

    Article  PubMed  CAS  Google Scholar 

  4. Kotronen A, Yki-Jarvinen H (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 28(1):27–38. https://doi.org/10.1161/ATVBAHA.107.147538

    Article  PubMed  CAS  Google Scholar 

  5. Lee DM, Tajar A, O’Neill TW et al (2011) Lower vitamin D levels are associated with depression among community-dwelling European men. J Psychopharmacol 25(10):1320–1328. https://doi.org/10.1177/0269881110379287

    Article  PubMed  CAS  Google Scholar 

  6. Barbonetti A, Cavallo F, D’Andrea S et al (2017) Lower vitamin D levels are associated with depression in people with chronic spinal cord injury. Arch Phys Med Rehabil 98(5):940–946. https://doi.org/10.1016/j.apmr.2016.11.006

    Article  PubMed  Google Scholar 

  7. Pilz S, Tomaschitz A, Ritz E, Pieber TR (2009) Vitamin D status and arterial hypertension: a systematic review. Nat Rev Cardiol 6(10):621–630. https://doi.org/10.1038/nrcardio.2009.135

    Article  PubMed  CAS  Google Scholar 

  8. Pittas AG, Lau J, Hu FB, Dawson-Hughes B (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 92(6):2017–2029. https://doi.org/10.1210/jc.2007-0298

    Article  PubMed  CAS  Google Scholar 

  9. Forouhi NG, Luan J, Cooper A, Boucher BJ, Wareham NJ (2008) Baseline serum 25-hydroxy vitamin d is predictive of future glycemic status and insulin resistance: the medical research council ely prospective study 1990–2000. Diabetes 57(10):2619–2625. https://doi.org/10.2337/db08-0593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Illescas-Montes R, Melguizo-Rodríguez L, Ruiz C, Costela-Ruiz VJ (2019) Vitamin D and autoimmune diseases. Life Sci 233:116744. https://doi.org/10.1016/j.lfs.2019.116744

    Article  PubMed  CAS  Google Scholar 

  11. Barbonetti A, Vassallo MR, Felzani G, Francavilla S, Francavilla F (2016) Association between 25(OH)-vitamin D and testosterone levels: evidence from men with chronic spinal cord injury. J Spinal Cord Med 39(3):246–252. https://doi.org/10.1179/2045772315Y.0000000050

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wicherts IS, van Schoor NM, Boeke AJ et al (2007) Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92(6):2058–2065. https://doi.org/10.1210/jc.2006-1525

    Article  PubMed  CAS  Google Scholar 

  13. Barbonetti A, Sperandio A, Micillo A et al (2016) Independent association of vitamin D with physical function in people with chronic spinal cord injury. Arch Phys Med Rehabil 97(5):726–732. https://doi.org/10.1016/j.apmr.2016b.01.002

    Article  PubMed  Google Scholar 

  14. Barbonetti A, D’Andrea S, Martorella A, Felzani G, Francavilla S, Francavilla F (2018) Low vitamin D levels are independent predictors of 1-year worsening in physical function in people with chronic spinal cord injury: a longitudinal study. Spinal Cord 56(5):494–501. https://doi.org/10.1038/s41393-017-0058-7

    Article  PubMed  Google Scholar 

  15. Haykal T, Samji V, Zayed Y et al (2019) The role of vitamin D supplementation for primary prevention of cancer: meta-analysis of randomized controlled trials. J Commu Hosp Intern Med Perspect 9(6):480–488. https://doi.org/10.1080/20009666.2019.1701839

    Article  Google Scholar 

  16. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72(3):690–693. https://doi.org/10.1093/ajcn/72.3.690

    Article  PubMed  CAS  Google Scholar 

  17. Waldenström J, Nyström K, Nilsson S, Norkrans G, Ydreborg M, Langeland N, Mørch K, Westin J, Lagging M (2020) The relation of 25-hydroxy vitamin D concentrations to liver histopathology, seasonality and baseline characteristics in chronic hepatitis C virus genotype 2 or 3 infection. PLoS One 15(8):e02378. https://doi.org/10.1371/journal.pone.0237840

    Article  CAS  Google Scholar 

  18. Ishida Y, Taniguchi H, Baba S (1988) Possible involvement of 1 alpha,25- dihydroxyvitamin D3 in proliferation and differentiation of 3T3-L1 cells. Biochem Biophys Res Commu 151:1122–1127. https://doi.org/10.1016/S0006-291X(88)80482-0

    Article  CAS  Google Scholar 

  19. Sato M, Hiragun A (1988) Demonstration of 1alpha,25-dihydroxyvitamin D3 receptor-like molecule in ST 13 and 3T3 L1 pre-adipocytes and its inhibitory effects on preadipocyte differentiation. J Cell Physiol 135:545–550. https://doi.org/10.1002/jcp.1041350326

    Article  PubMed  CAS  Google Scholar 

  20. Barchetta I, Cimini FA, Cavallo MG (2020) Vitamin D and metabolic dysfunction-associated fatty liver disease (MAFLD): an update. Nutrients. 12(11):3302. https://doi.org/10.3390/nu12113302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Barchetta I, Cimini FA, Chiappetta C, Bertoccini L, Ceccarelli V, Capoccia D, Gaggini M, Di Cristofano C, Della Rocca C, Silecchia G, Leonetti F, Lenzi A, Gastaldelli A, Cavallo MG (2020) Relationship between hepatic and systemic angiopoietin-like 3, hepatic vitamin D receptor expression and NAFLD in obesity. Liver Int 40(9):2139–2147. https://doi.org/10.1111/liv.14554

    Article  PubMed  CAS  Google Scholar 

  22. Wood RJ (2008) Vitamin D and adipogenesis: new molecular insights. Nutr Rev 66:40–46. https://doi.org/10.1111/j.1753-4887.2007.00004.x

    Article  PubMed  Google Scholar 

  23. Kong J, Li YC (2006) Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab 290(5):E916–E924. https://doi.org/10.1152/ajpendo.00410.2005

    Article  PubMed  CAS  Google Scholar 

  24. Ha Y, Hwang SG, Rim KS (2017) The association between vitamin D insufficiency and nonalcoholic fatty liver disease: a population-based study. Nutrients 9(8):806. https://doi.org/10.3390/nu9080806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jaruvongvanich V, Ahuja W, Sanguankeo A, Wijarnpreecha K, Upala S (2017) Vitamin D and histologic severity of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Dig Liver Dis 49(6):618–622. https://doi.org/10.1016/j.dld.2017.02.003

    Article  PubMed  CAS  Google Scholar 

  26. Zhu S, Wang Y, Luo F, Liu J, Xiu L, Qin J, Wang T, Yu N, Wu H, Zou T (2019) The level of vitamin D in children and adolescents with nonalcoholic fatty liver disease: a meta-analysis. Biomed Res Int 14:7643542. https://doi.org/10.1155/2019/7643542

    Article  CAS  Google Scholar 

  27. Liu T, Xu L, Chen FH, Zhou YB (2020) Association of serum vitamin D level and nonalcoholic fatty liver disease: a meta-analysis. Eur J Gastroenterol Hepatol 32(2):140–147. https://doi.org/10.1097/MEG.0000000000001486

    Article  PubMed  Google Scholar 

  28. Bennouar S, Cherif AB, Kessira A, Bennouar DE, Abdi S (2021) Association and interaction between vitamin D level and metabolic syndrome for non-alcoholic fatty liver disease. J Diabetes Metab Disord 20(2):1309–1317. https://doi.org/10.1007/s40200-021-00857-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yuan S, Larsson SC (2022) Inverse association between serum 25-hydroxyvitamin D and nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 21(2):398-405.e4. https://doi.org/10.1016/j.cgh.2022.01.021

    Article  PubMed  CAS  Google Scholar 

  30. Wang M, Wang M, Zhang R, Shen C, Zhang L, Ding Y, Tang Z, Wang H, Zhang W, Chen Y, Wang J (2022) Influences of vitamin D levels and vitamin D-binding protein polymorphisms on nonalcoholic fatty liver disease risk in a chinese population. Ann Nutr Metab 78(2):61–72. https://doi.org/10.1159/000522193

    Article  PubMed  CAS  Google Scholar 

  31. Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Castillo C, Gater DR (2014) Effects of spinal cord injury on body composition and metabolic profile - part I. J Spinal Cord Med 37(6):693–702. https://doi.org/10.1179/2045772314Y.0000000245

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cirnigliaro CM, LaFountaine MF, Dengel DR et al (2015) Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-ray absorptiometry. Obesity (Silver Spring) 23(9):1811–1817. https://doi.org/10.1002/oby.21194

    Article  PubMed  Google Scholar 

  33. Bauman WA, Zhong YG, Schwartz E (1995) Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism 44(12):1612–1616. https://doi.org/10.1016/0026-0495(95)90083-7

    Article  PubMed  CAS  Google Scholar 

  34. Gater DR Jr, Farkas GJ, Berg AS, Castillo C (2019) Prevalence of metabolic syndrome in veterans with spinal cord injury. J Spinal Cord Med 42(1):86–93. https://doi.org/10.1080/10790268.2017.1423266

    Article  PubMed  Google Scholar 

  35. Barbonetti A, Caterina Vassallo MR, Cotugno M, Felzani G, Francavilla S, Francavilla F (2016) Low testosterone and non-alcoholic fatty liver disease: Evidence for their independent association in men with chronic spinal cord injury. J Spinal Cord Med 39(4):443–449. https://doi.org/10.1179/2045772314Y.0000000288

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maïmoun L, Fattal C, Sultan C (2011) Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review. Metabolism 60(12):1655–1663. https://doi.org/10.1016/j.metabol.2011.04.005

    Article  PubMed  CAS  Google Scholar 

  37. Groah SL, Weitzenkamp D, Sett P, Soni B, Savic G (2001) The relationship between neurological level of injury and symptomatic cardiovascular disease risk in the aging spinal injured. Spinal Cord 39(6):310–317. https://doi.org/10.1038/sj.sc.3101162

    Article  PubMed  CAS  Google Scholar 

  38. Wu JC, Chen YC, Liu L, Chen TJ, Huang WC, Cheng H, Tung-Ping S (2012) Increased risk of stroke after spinal cord injury: a nationwide 4-year follow-up cohort study. Neurology 78(14):1051–1057. https://doi.org/10.1212/WNL.0b013e31824e8eaa

    Article  PubMed  Google Scholar 

  39. Cragg JJ, Noonan VK, Krassioukov A, Borisoff J (2013) Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology 81(8):723–728. https://doi.org/10.1212/WNL.0b013e3182a1aa68

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, Kashyap S, Mechanick JI, Mouzaki M, Nadolsky K, Rinella ME, Vos MB, Younossi Z (2022) American association of clinical endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings: co-sponsored by the American Association for the study of liver diseases (AASLD). Endocr Pract 28(5):528–562. https://doi.org/10.1016/j.eprac.2022.03.010

    Article  PubMed  Google Scholar 

  41. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37(4):917–923. https://doi.org/10.1053/jhep.2003.50161

    Article  PubMed  Google Scholar 

  42. Kim HJ, Kim HJ, Lee KE, Kim DJ, Kim SK, Ahn CW, Lim SK, Kim KR, Lee HC, Huh KB, Cha BS (2004) Metabolic significance of nonalcoholic fatty liver disease in nonobese, nondiabetic adults. Arch Intern Med 164(19):2169–2175. https://doi.org/10.1001/archinte.164.19.2169

    Article  PubMed  Google Scholar 

  43. Charlson M, Szatrowski TP, Peterson J, Gold J (1994) Validation of a combined comorbidity index. J Clin Epidemiol 47(11):1245–1251. https://doi.org/10.1016/0895-4356(94)90129-5

    Article  CAS  Google Scholar 

  44. Maynard FM Jr, Bracken MB, Creasey G et al (1997) International standards for neurological and functional classification of spinal cord injury American spinal injury association. Spinal Cord 35(5):266–274. https://doi.org/10.1038/sj.sc.3100432

    Article  PubMed  Google Scholar 

  45. Anderson K, Aito S, Atkins M et al (2008) Functional recovery measures for spinal cord injury: an evidence-based review for clinical practice and research. J Spinal Cord Med 31(2):133–144. https://doi.org/10.1080/10790268.2008.11760704

    Article  PubMed  PubMed Central  Google Scholar 

  46. Martin Ginis KA, Phang SH, Latimer AE, Arbour-Nicitopoulos KP (2012) Reliability and validity tests of the leisure time physical activity questionnaire for people with spinal cord injury. Arch Phys Med Rehabil 93(4):677–682. https://doi.org/10.1016/j.apmr.2011.11.005

    Article  PubMed  Google Scholar 

  47. Barbonetti A, Vassallo MR, Pacca F et al (2014) Correlates of low testosterone in men with chronic spinal cord injury. Andrology 2(5):721–728. https://doi.org/10.1111/j.2047-2927.2014.00235.x

    Article  PubMed  CAS  Google Scholar 

  48. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419. https://doi.org/10.1007/BF00280883

    Article  PubMed  CAS  Google Scholar 

  49. Sipski ML, Estores IM, Alexander CJ, Guo X, Chandralapaty SK (2004) Lack of justification for routine abdominal ultrasonography in patients with chronic spinal cord injury. J Rehabil Res Dev 41(1):101–108. https://doi.org/10.1682/jrrd.2004.01.0101

    Article  PubMed  Google Scholar 

  50. Shin JC, Park CI, Kim SH, Yang EJ, Kim EJ, Rha DW (2006) Abdominal ultrasonography findings in patients with spinal cord injury in Korea. J Korean Med Sci 21(5):927–931. https://doi.org/10.3346/jkms.2006.21.5.927

    Article  PubMed  PubMed Central  Google Scholar 

  51. Goodus MT, McTigue DM (2020) Hepatic dysfunction after spinal cord injury: a vicious cycle of central and peripheral pathology? Exp Neurol. 325:113160. https://doi.org/10.1016/j.expneurol.2019.113160

    Article  PubMed  CAS  Google Scholar 

  52. Anthony DC, Couch Y (2014) The systemic response to CNS injury. Exp Neurol 258:105–111. https://doi.org/10.1016/j.expneurol.2014.03.013

    Article  PubMed  CAS  Google Scholar 

  53. Liu J, An H, Jiang D, Huang W, Zou H, Meng C, Li H (2004) Study of bacterial translocation from gut after paraplegia caused by spinal cord injury in rats. Spine (Phila Pa 1976). 29(2):164–9. https://doi.org/10.1097/01.BRS.0000107234.74249.CD

    Article  PubMed  Google Scholar 

  54. Chang ZQ, Lee SY, Kim HJ, Kim JR, Kim SJ, Hong IK, Oh BC, Choi CS, Goldberg IJ, Park TS (2011) Endotoxin activates de novo sphingolipid biosynthesis via nuclear factor kappa B-mediated upregulation of Sptlc2. Prostaglandins Other Lipid Mediat 94(1–2):44–52. https://doi.org/10.1016/j.prostaglandins.2010.12.003

    Article  PubMed  CAS  Google Scholar 

  55. Hernández-Corbacho MJ, Canals D, Adada MM, Liu M, Senkal CE, Yi JK, Mao C, Luberto C, Hannun YA, Obeid LM (2015) Tumor necrosis factor-α (TNFα)-induced ceramide generation via ceramide synthases regulates loss of focal adhesion kinase (FAK) and programmed cell death. J Biol Chem 290(42):25356–25373

    Article  PubMed  PubMed Central  Google Scholar 

  56. Karlsson AK (1999) Insulin resistance and sympathetic function in high spinal cord injury. Spinal Cord 37(7):494–500. https://doi.org/10.1038/sj.sc.3100844

    Article  PubMed  CAS  Google Scholar 

  57. Ruan H, Lodish HF (2003) Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev 14(5):447–455. https://doi.org/10.1016/s1359-6101(03)00052-2

    Article  PubMed  CAS  Google Scholar 

  58. Barchetta I, Carotti S, Labbadia G, Gentilucci UV, Muda AO, Angelico F, Silecchia G, Leonetti F, Fraioli A, Picardi A, Morini S, Cavallo MG (2012) Liver vitamin D receptor, CYP2R1, and CYP27A1 expression: relationship with liver histology and vitamin D3 levels in patients with nonalcoholic steatohepatitis or hepatitis C virus. Hepatology 56(6):2180–2187. https://doi.org/10.1002/hep.25930

    Article  PubMed  CAS  Google Scholar 

  59. Sheng Q, Shi H, Liu S et al (2023) (2022) serum 25-hydroxyvitamin d levels and the risk of non-alcoholic fatty liver: A two-sample Mendelian randomization study. Saudi J Gastroenterol. 29(1):39–46. https://doi.org/10.4103/sjg.sjg_297_22

    Article  PubMed  Google Scholar 

  60. Zhang Z, Burrows K, Fuller H, Speliotes EK, Abeysekera KWM, Thorne JL, Lewis SJ, Zulyniak MA, Moore JB (2023) Non-alcoholic fatty liver disease and vitamin D in the UK biobank: a two-sample bidirectional mendelian randomisation study. Nutrients 15(6):1442. https://doi.org/10.3390/nu15061442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zeng Y, Luo M, Pan L, Chen Y, Guo S, Luo D, Zhu L, Liu Y, Pan L, Xu S, Zhang R, Zhang C, Wu P, Ge L, Noureddin M, Pandol SJ, Han YP (2020) Vitamin D signaling maintains intestinal innate immunity and gut microbiota: potential intervention for metabolic syndrome and NAFLD. Am J Physiol Gastrointest Liver Physiol 318(3):G542–G553. https://doi.org/10.1152/ajpgi.00286.2019

    Article  PubMed  PubMed Central  Google Scholar 

  62. Calvo M, Ena JM (1989) Relations between vitamin D and fatty acid binding properties of vitamin D-binding protein. Biochem Biophys Res Commun 163(1):14–17. https://doi.org/10.1016/0006-291x(89)92091-3

    Article  PubMed  CAS  Google Scholar 

  63. Kew RR (2019) The vitamin D binding protein and inflammatory injury: a mediator or sentinel of tissue damage? Front Endocrinol (Lausanne) 10:470. https://doi.org/10.3389/fendo.2019.00470

    Article  PubMed  Google Scholar 

  64. Oleson CV, Patel PH, Wuermser LA (2010) Influence of season, ethnicity, and chronicity on vitamin D deficiency in traumatic spinal cord injury. J Spinal Cord Med 33:202–213. https://doi.org/10.1080/10790268.2010.11689697

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hummel K, Craven BC, Giangregorio L (2012) Serum 25(OH)D, PTH and correlates of suboptimal 25(OH)D levels in persons with chronic spinal cord injury. Spinal Cord 50:812–816. https://doi.org/10.1038/sc.2012.67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Flueck JL, Hartmann K, Strupler M, Perret C (2016) Vitamin D deficiency in swiss elite wheelchair athletes. Spinal Cord 54(11):991–995. https://doi.org/10.1038/sc.2016.33

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

FDG and CC performed literature search, data analysis and interpretation, and drafted the manuscript; CC and DT substantially contributed to literature search and prepared tables and figures; GF and MGB revised the manuscript critically for important intellectual content; AB conceived the study and supervised the manuscript writing, and critically reviewed and revised the manuscript for intellectual content, by relevantly improving the scientific content and the formal style. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Barbonetti.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests. Marco Giorgio Baroni and Arcangelo Barbonetti are members of the Editorial Board of the J Endocrinol Invest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the local Ethics Committee.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Participants signed informed consent regarding publishing their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Giulio, F., Castellini, C., Tienforti, D. et al. Independent association of hypovitaminosis d with non-alcoholic fatty liver disease in people with chronic spinal cord injury: a cross-sectional study. J Endocrinol Invest 47, 79–89 (2024). https://doi.org/10.1007/s40618-023-02124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02124-1

Keywords

Navigation