Skip to main content

Advertisement

Log in

Predictors of thyroid adverse events during cancer immunotherapy: a real-life experience at a single center

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Thyroid dysfunction is among the most common immune-related adverse events (irAEs) of immune checkpoint inhibitors (ICIs) therapy. Data regarding potential predictors of the development of thyroid irAEs are still limited and sometimes conflicting.

Patients and methods

We assessed potential risk factors and clinical outcomes associated with the onset of thyroid irAEs in a cohort of patients with different types of cancer treated with ICIs at a single center. Clinical and biochemical data, including thyroid function tests and autoantibodies at baseline and during treatment, were collected, and the onset of thyroid irAEs was recorded. Patients with thyroid dysfunction and/or under levothyroxine therapy before starting ICI were excluded.

Results

110 patients (80 M, 30 F, aged 32–85 years; 56.4% non-small-cell lung cancer, 87% treated with anti-PD-1) with complete information were included in the study. Among them, 32 (29%) developed thyroid irAEs during ICIs therapy. Primary hypothyroidism was the most common irAEs, occurring in 31 patients (28.18% of the whole cohort), including 14 patients who experienced a transient thyrotoxicosis. About 60% of irAEs occurred within the first 8 weeks of therapy. At multivariate analysis, anti-thyroid autoantibodies positivity at baseline (OR 18.471, p = 0.022), a pre-existing (autoimmune and non-autoimmune) thyroid disorder (OR 16.307, p < 0.001), and a family history of thyroid diseases (OR = 9.287, p = 0.002) were independent predictors of the development of thyroid irAEs.

Conclusion

Our data confirm the high frequency of thyroid dysfunctions (mostly hypothyroidism) during ICIs, and provide data on valuable predictors of thyroid toxicities that may help clinicians in identifying patients at risk for developing irAEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stewart TJ, Smyth MJ (2011) Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev 30:125–140. https://doi.org/10.1007/s10555-011-9280-5

    Article  CAS  PubMed  Google Scholar 

  2. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Twomey JD, Zhang B (2021) Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J 23:39. https://doi.org/10.1208/s12248-021-00574-0

    Article  PubMed  Google Scholar 

  4. Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutierrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, Dalle S, Arance A, Grob JJ, Srivastava S, Abaskharoun M, Hamilton M, Keidel S, Simonsen KL, Sobiesk AM, Li B, Hodi FS, Long GV, Investigators R (2022) Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med 386:24–34. https://doi.org/10.1056/NEJMoa2109970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spagnolo CC, Giuffrida G, Cannavo S, Franchina T, Silvestris N, Ruggeri RM, Santarpia M (2022) Management of endocrine and metabolic toxicities of immune-checkpoint inhibitors: from clinical studies to a real-life scenario. Cancers (Basel). https://doi.org/10.3390/cancers15010246

    Article  PubMed  Google Scholar 

  6. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982. https://doi.org/10.1200/JCO.2014.59.4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378:158–168. https://doi.org/10.1056/NEJMra1703481

    Article  CAS  PubMed  Google Scholar 

  8. Barroso-Sousa R, Barry WT, Garrido-Castro AC, Hodi FS, Min L, Krop IE, Tolaney SM (2018) Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol 4:173–182. https://doi.org/10.1001/jamaoncol.2017.3064

    Article  PubMed  Google Scholar 

  9. Inno A, Metro G, Bironzo P, Grimaldi AM, Grego E, Di Nunno V, Picasso V, Massari F, Gori S (2017) Pathogenesis, clinical manifestations and management of immune checkpoint inhibitors toxicity. Tumori 103:405–421. https://doi.org/10.5301/tj.5000625

    Article  CAS  PubMed  Google Scholar 

  10. Del Rivero J, Cordes LM, Klubo-Gwiezdzinska J, Madan RA, Nieman LK, Gulley JL (2020) Endocrine-related adverse events related to immune checkpoint inhibitors: proposed algorithms for management. Oncologist 25:290–300. https://doi.org/10.1634/theoncologist.2018-0470

    Article  PubMed  Google Scholar 

  11. Chang LS, Barroso-Sousa R, Tolaney SM, Hodi FS, Kaiser UB, Min L (2019) Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. Endocr Rev 40:17–65. https://doi.org/10.1210/er.2018-00006

    Article  PubMed  Google Scholar 

  12. Ruggeri RM, Campenni A, Giuffrida G, Trimboli P, Giovanella L, Trimarchi F, Cannavo S (2019) Endocrine and metabolic adverse effects of immune checkpoint inhibitors: an overview (what endocrinologists should know). J Endocrinol Invest 42:745–756. https://doi.org/10.1007/s40618-018-0984-z

    Article  CAS  PubMed  Google Scholar 

  13. Muir CA, Clifton-Bligh RJ, Long GV, Scolyer RA, Lo SN, Carlino MS, Tsang VHM, Menzies AM (2021) Thyroid immune-related adverse events following immune checkpoint inhibitor treatment. J Clin Endocrinol Metab 106:e3704–e3713. https://doi.org/10.1210/clinem/dgab263

    Article  PubMed  Google Scholar 

  14. von Itzstein MS, Gonugunta AS, Wang Y, Sheffield T, Lu R, Ali S, Fattah FJ, Xie D, Cai J, Xie Y, Gerber DE (2022) Divergent prognostic effects of pre-existing and treatment-emergent thyroid dysfunction in patients treated with immune checkpoint inhibitors. Cancer Immunol Immunother 71:2169–2181. https://doi.org/10.1007/s00262-022-03151-2

    Article  CAS  Google Scholar 

  15. Muir CA, Tsang VHM, Menzies AM, Clifton-Bligh RJ (2022) Immune related adverse events of the thyroid—a narrative review. Front Endocrinol (Lausanne) 13:886930. https://doi.org/10.3389/fendo.2022.886930

    Article  PubMed  Google Scholar 

  16. Iyer PC, Cabanillas ME, Waguespack SG, Hu MI, Thosani S, Lavis VR, Busaidy NL, Subudhi SK, Diab A, Dadu R (2018) Immune-related thyroiditis with immune checkpoint inhibitors. Thyroid 28:1243–1251. https://doi.org/10.1089/thy.2018.0116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Freeman-Keller M, Kim Y, Cronin H, Richards A, Gibney G, Weber JS (2016) Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin Cancer Res 22:886–894. https://doi.org/10.1158/1078-0432.CCR-15-1136

    Article  CAS  PubMed  Google Scholar 

  18. Presotto EM, Rastrelli G, Desideri I, Scotti V, Gunnella S, Pimpinelli N, Vaccher E, Bearz A, Di Costanzo F, Bruggia M, Mini E, Maggi M, Peri A (2020) Endocrine toxicity in cancer patients treated with nivolumab or pembrolizumab: results of a large multicentre study. J Endocrinol Invest 43:337–345. https://doi.org/10.1007/s40618-019-01112-8

    Article  CAS  PubMed  Google Scholar 

  19. Percik R, Shoenfeld Y (2020) Check point inhibitors and autoimmunity: Why endocrinopathies and who is prone to? Best Pract Res Clin Endocrinol Metab 34:101411. https://doi.org/10.1016/j.beem.2020.101411

    Article  CAS  PubMed  Google Scholar 

  20. Rubino R, Marini A, Roviello G, Presotto EM, Desideri I, Ciardetti I, Brugia M, Pimpinelli N, Antonuzzo L, Mini E, Livi L, Maggi M, Peri A (2021) Endocrine-related adverse events in a large series of cancer patients treated with anti-PD1 therapy. Endocrine 74:172–179. https://doi.org/10.1007/s12020-021-02750-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peiffert M, Cugnet-Anceau C, Dalle S, Chikh K, Assaad S, Disse E, Raverot G, Borson-Chazot F, Abeillon-du Payrat J (2021) Graves’ disease during immune checkpoint inhibitor therapy (a case series and literature review). Cancers (Basel). https://doi.org/10.3390/cancers13081944

    Article  PubMed  Google Scholar 

  22. Haanen J, Ernstoff MS, Wang Y, Menzies AM, Puzanov I, Grivas P, Larkin J, Peters S, Thompson JA, Obeid M (2020) Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: review of the literature and personalized risk-based prevention strategy. Ann Oncol 31:724–744. https://doi.org/10.1016/j.annonc.2020.03.285

    Article  CAS  PubMed  Google Scholar 

  23. Morganstein DL, Lai Z, Spain L, Diem S, Levine D, Mace C, Gore M, Larkin J (2017) Thyroid abnormalities following the use of cytotoxic T-lymphocyte antigen-4 and programmed death receptor protein-1 inhibitors in the treatment of melanoma. Clin Endocrinol (Oxf) 86:614–620. https://doi.org/10.1111/cen.13297

    Article  CAS  PubMed  Google Scholar 

  24. Scott ES, Long GV, Guminski A, Clifton-Bligh RJ, Menzies AM, Tsang VH (2018) The spectrum, incidence, kinetics and management of endocrinopathies with immune checkpoint inhibitors for metastatic melanoma. Eur J Endocrinol 178:173–180. https://doi.org/10.1530/EJE-17-0810

    Article  CAS  PubMed  Google Scholar 

  25. Guaraldi F, La Selva R, Sama MT, D’Angelo V, Gori D, Fava P, Fierro MT, Savoia P, Arvat E (2018) Characterization and implications of thyroid dysfunction induced by immune checkpoint inhibitors in real-life clinical practice: a long-term prospective study from a referral institution. J Endocrinol Invest 41:549–556. https://doi.org/10.1007/s40618-017-0772-1

    Article  CAS  PubMed  Google Scholar 

  26. Delivanis DA, Gustafson MP, Bornschlegl S, Merten MM, Kottschade L, Withers S, Dietz AB, Ryder M (2017) Pembrolizumab-induced thyroiditis: comprehensive clinical review and insights into underlying involved mechanisms. J Clin Endocrinol Metab 102:2770–2780. https://doi.org/10.1210/jc.2017-00448

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maekura T, Naito M, Tahara M, Ikegami N, Kimura Y, Sonobe S, Kobayashi T, Tsuji T, Minomo S, Tamiya A, Atagi S (2017) Predictive factors of nivolumab-induced hypothyroidism in patients with non-small cell lung cancer. In Vivo 31:1035–1039. https://doi.org/10.21873/invivo.11166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luongo C, Morra R, Gambale C, Porcelli T, Sessa F, Matano E, Damiano V, Klain M, Schlumberger M, Salvatore D (2021) Higher baseline TSH levels predict early hypothyroidism during cancer immunotherapy. J Endocrinol Invest 44:1927–1933. https://doi.org/10.1007/s40618-021-01508-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Basak EA, van der Meer JWM, Hurkmans DP, Schreurs MWJ, Oomen-de Hoop E, van der Veldt AAM, Bins S, Joosse A, Koolen SLW, Debets R, Peeters RP, Aerts J, Mathijssen RHJ, Medici M (2020) Overt thyroid dysfunction and anti-thyroid antibodies predict response to anti-PD-1 immunotherapy in cancer patients. Thyroid 30:966–973. https://doi.org/10.1089/thy.2019.0726

    Article  CAS  PubMed  Google Scholar 

  30. Brilli L, Danielli R, Campanile M, Secchi C, Ciuoli C, Calabro L, Pilli T, Cartocci A, Pacini F, Di Giacomo AM, Castagna MG (2021) Baseline serum TSH levels predict the absence of thyroid dysfunction in cancer patients treated with immunotherapy. J Endocrinol Invest 44:1719–1726. https://doi.org/10.1007/s40618-020-01480-6

    Article  CAS  PubMed  Google Scholar 

  31. Yasuda Y, Iwama S, Sugiyama D, Okuji T, Kobayashi T, Ito M, Okada N, Enomoto A, Ito S, Yan Y, Sugiyama M, Onoue T, Tsunekawa T, Ito Y, Takagi H, Hagiwara D, Goto M, Suga H, Banno R, Takahashi M, Nishikawa H, Arima H (2021) CD4(+) T cells are essential for the development of destructive thyroiditis induced by anti-PD-1 antibody in thyroglobulin-immunized mice. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abb7495

    Article  PubMed  Google Scholar 

  32. Gutzmer R, Koop A, Meier F, Hassel JC, Terheyden P, Zimmer L, Heinzerling L, Ugurel S, Pfohler C, Gesierich A, Livingstone E, Satzger I, Kahler KC, German Dermatooncology G (2017) Programmed cell death protein-1 (PD-1) inhibitor therapy in patients with advanced melanoma and preexisting autoimmunity or ipilimumab-triggered autoimmunity. Eur J Cancer 75:24–32. https://doi.org/10.1016/j.ejca.2016.12.038

    Article  CAS  PubMed  Google Scholar 

  33. Leonardi GC, Gainor JF, Altan M, Kravets S, Dahlberg SE, Gedmintas L, Azimi R, Rizvi H, Riess JW, Hellmann MD, Awad MM (2018) Safety of programmed death-1 pathway inhibitors among patients with non-small-cell lung cancer and preexisting autoimmune disorders. J Clin Oncol 36:1905–1912. https://doi.org/10.1200/JCO.2017.77.0305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kahler KC, Eigentler TK, Gesierich A, Heinzerling L, Loquai C, Meier F, Meiss F, Pfohler C, Schlaak M, Terheyden P, Thoms KM, Ziemer M, Zimmer L, Gutzmer R, German Dermatologic Cooperative Oncology G (2018) Ipilimumab in metastatic melanoma patients with pre-existing autoimmune disorders. Cancer Immunol Immunother 67:825–834. https://doi.org/10.1007/s00262-018-2134-z

    Article  CAS  PubMed  Google Scholar 

  35. Hoa S, Laaouad L, Roberts J, Ennis D, Ye C, Al Jumaily K, Pope J, Nevskaya T, Saltman A, Himmel M, Rottapel R, Ly C, Colmegna I, Fifi-Mah A, Maltez N, Tisseverasinghe A, Hudson M, Jamal S (2021) Preexisting autoimmune disease and immune-related adverse events associated with anti-PD-1 cancer immunotherapy: a national case series from the Canadian research group of rheumatology in immuno-oncology. Cancer Immunol Immunother 70:2197–2207. https://doi.org/10.1007/s00262-021-02851-5

    Article  CAS  PubMed  Google Scholar 

  36. Ghosh N, Chan KK, Jivanelli B, Bass AR (2022) Autoantibodies in patients with immune-related adverse events from checkpoint inhibitors: a systematic literature review. J Clin Rheumatol 28:e498–e505. https://doi.org/10.1097/RHU.0000000000001777

    Article  PubMed  PubMed Central  Google Scholar 

  37. Iadarola C, Croce L, Quaquarini E, Teragni C, Pinto S, Bernardo A, Fonte R, Marinò M, Rotondi M, Chiovato L (2019) Nivolumab induced thyroid dysfunction: unusual clinical presentation and challenging diagnosis. Front Endocrinol (Lausanne) 9:813. https://doi.org/10.3389/fendo.2018.00813

    Article  PubMed  Google Scholar 

  38. Yamauchi I, Yasoda A, Matsumoto S, Sakamori Y, Kim YH, Nomura M, Otsuka A, Yamasaki T, Saito R, Kitamura M, Kitawaki T, Hishizawa M, Kawaguchi-Sakita N, Fujii T, Taura D, Sone M, Inagaki N (2019) Incidence, features, and prognosis of immune-related adverse events involving the thyroid gland induced by nivolumab. PLoS ONE 14:e0216954. https://doi.org/10.1371/journal.pone.0216954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kurimoto C, Inaba H, Ariyasu H, Iwakura H, Ueda Y, Uraki S, Takeshima K, Furukawa Y, Morita S, Yamamoto Y, Yamashita S, Katsuda M, Hayata A, Akamatsu H, Jinnin M, Hara I, Yamaue H, Akamizu T (2020) Predictive and sensitive biomarkers for thyroid dysfunctions during treatment with immune-checkpoint inhibitors. Cancer Sci 111:1468–1477. https://doi.org/10.1111/cas.14363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim HI, Kim M, Lee SH, Park SY, Kim YN, Kim H, Jeon MJ, Kim TY, Kim SW, Kim WB, Kim SW, Lee DH, Park K, Ahn MJ, Chung JH, Shong YK, Kim WG, Kim TH (2017) Development of thyroid dysfunction is associated with clinical response to PD-1 blockade treatment in patients with advanced non-small cell lung cancer. Oncoimmunology 7:e1375642. https://doi.org/10.1080/2162402X.2017.1375642

    Article  PubMed  PubMed Central  Google Scholar 

  41. Haratani K, Hayashi H, Chiba Y, Kudo K, Yonesaka K, Kato R, Kaneda H, Hasegawa Y, Tanaka K, Takeda M, Nakagawa K (2018) Association of immune-related adverse events with nivolumab efficacy in non-small-cell lung cancer. JAMA Oncol 4:374–378. https://doi.org/10.1001/jamaoncol.2017.2925

    Article  PubMed  Google Scholar 

  42. Kotwal A, Kottschade L, Ryder M (2020) PD-L1 inhibitor-induced thyroiditis is associated with better overall survival in cancer patients. Thyroid 30:177–184. https://doi.org/10.1089/thy.2019.0250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lima Ferreira J, Costa C, Marques B, Castro S, Victor M, Oliveira J, Santos AP, Sampaio IL, Duarte H, Marques AP, Torres I (2021) Improved survival in patients with thyroid function test abnormalities secondary to immune-checkpoint inhibitors. Cancer Immunol Immunother 70:299–309. https://doi.org/10.1007/s00262-020-02664-y

    Article  CAS  PubMed  Google Scholar 

  44. Baldini E, Lunghi A, Cortesi E, Turci D, Signorelli D, Stati V, Melotti B, Ricciuti B, Frassoldati A, Romano G, Ceresoli GL, Illiano A, Verderame F, Fasola G, Ricevuto E, Marchetti P, Pinto C, Carteni G, Scotti V, Tibaldi C, Fioretto L, Giannarelli D (2020) Immune-related adverse events correlate with clinical outcomes in NSCLC patients treated with nivolumab: the Italian NSCLC expanded access program. Lung Cancer 140:59–64. https://doi.org/10.1016/j.lungcan.2019.12.014

    Article  PubMed  Google Scholar 

  45. Ricciuti B, Genova C, De Giglio A, Bassanelli M, Dal Bello MG, Metro G, Brambilla M, Baglivo S, Grossi F, Chiari R (2019) Impact of immune-related adverse events on survival in patients with advanced non-small cell lung cancer treated with nivolumab: long-term outcomes from a multi-institutional analysis. J Cancer Res Clin Oncol 145:479–485. https://doi.org/10.1007/s00432-018-2805-3

    Article  CAS  PubMed  Google Scholar 

  46. Hsiehchen D, Naqash AR, Espinoza M, Von Itzstein MS, Cortellini A, Ricciuti B, Owen DH, Laharwal M, Toi Y, Burke M, Xie Y, Gerber DE (2022) Association between immune-related adverse event timing and treatment outcomes. Oncoimmunology 11:2017162. https://doi.org/10.1080/2162402X.2021.2017162

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ruggeri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Patients were treated and followed according to international guidelines and local practices. Local Ethics Research Committee approval was obtained. All procedures performed in this study were in accordance with the ethical standards of the institutional research committee. This study complies with the Declaration of Helsinki.

Research involving human participants and/or animals

All procedures were approved by he Local Ethics Research Committee of the University Hospital Policlinico “G. Martino”. The study was carried out in accordance with the World Medical Association’s Declaration of Helsinki. No animals were used for this study.

Informed consent

Written informed consent was obtained from the patients for publication of this case series.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, R.M., Spagnolo, C.C., Alibrandi, A. et al. Predictors of thyroid adverse events during cancer immunotherapy: a real-life experience at a single center. J Endocrinol Invest 46, 2399–2409 (2023). https://doi.org/10.1007/s40618-023-02096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02096-2

Keywords

Navigation