Skip to main content
Log in

Unexpectedly high mutation rate of cyp11b1 compared to cyp21a2 in randomly-selected turkish women: a large screening study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders resulting from enzyme deficiencies associated with steroidogenesis. The clinical presentation of non-classic CAH (NCAH) in females is often indistinguishable from other hyperandrogenic disorders like polycystic ovary syndrome (PCOS). The data on the prevalence of NCAH in unselected women in the literature is scanty. The research aimed to evaluate the prevalence of NCAH, carrier frequencies, and the correlation between clinical symptoms and genotype in Turkish women.

Methods

The study group comprised two hundred and seventy randomly-selected unrelated asymptomatic women of reproductive age (18–45). Subjects were recruited from female blood donors. All volunteers underwent clinical examination and hormone measurements. The protein-encoding exons and exon–intron boundaries of the CYP21A2, CYP11B1, HSD3β2 and CYP21A2 promoter were sequenced by direct DNA sequencing.

Results

After genotyping, seven (2.2%) individuals were diagnosed with NCAH. The heterozygous carrier frequencies of CYP21A2, CYP21A2 promoter, CYP11B1, and HSD3β2 genes with 34, 34, 41, and 1 pathologic mutation were determined at 12.6%, 12.6%, 15.2%, and 0.37% of volunteers, respectively. Gene-conversion (GC) frequencies between CYP21A2/CYP21A1P and CYP11B1/CYP11B2 were determined as 10.4% and 14.8%, respectively.

Conclusion

Despite GC-derived higher mutation frequency determined in the CYP11B1 gene, the reason for the low frequency of NCAH due to 11OHD compared to 21OHD might be that gene-conversion arises with active CYP11B2 rather than an inactive pseudogene. HSD3β1 exhibits high homology with HSD3β2 located on the same chromosome; remarkably, it demonstrates low heterozygosity and no GC, most probably the outcome of a tissue-specific expression pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speiser PW, White PC (2003) Congenital adrenal hyperplasia. N Engl J Med 349:776–788. https://doi.org/10.1056/NEJMra021561

    Article  CAS  PubMed  Google Scholar 

  2. New MI (2001) Prenatal treatment of congenital adrenal hyperplasia: the United States experience. Endocrinol Metab Clin N Am 30:1–13

    Article  CAS  Google Scholar 

  3. Miller WL, Auchus RJ (2011) The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 32:81–151. https://doi.org/10.1210/er.2010-0013

    Article  PubMed  Google Scholar 

  4. Kelestimur F (2006) Non-classic congenital adrenal hyperplasia. Pediatr Endocrinol Rev 3:451–454

    PubMed  Google Scholar 

  5. Polat S, Kulle A, Karaca Z, Akkurt I, Kurtoglu S, Kelestimur F, Grötzinger J, Holterhus PM, Riepe FG (2014) Characterisation of three novel CYP11B1 mutations in classic and non-classic 11beta-hydroxylase deficiency. Eur J Endocrinol 170:697–706. https://doi.org/10.1530/EJE-13-0737

    Article  CAS  PubMed  Google Scholar 

  6. Unluhizarci K, Kula M, Dundar M, Tanriverdi F, Israel S, Colak R, Dokmetas HS, Atmaca H, Bahceci M, Balci MK, Comlekci A, Bilen H, Akarsu E, Erem C, Kelestimur F (2010) The prevalence of non-classic adrenal hyperplasia among Turkish women with hyperandrogenism. Gynecol Endocrinol 26:139–143. https://doi.org/10.3109/09513590903215466

    Article  CAS  PubMed  Google Scholar 

  7. Keleştimur F, Sahin Y, Ayata D, Tutuş A (1996) The prevalence of non-classic adrenal hyperplasia due to 11 beta-hydroxylase deficiency among hirsute women in a Turkish population. Clin Endocrinol (Oxf) 45:381–384. https://doi.org/10.1046/j.1365-2265.1996.8150825.x

    Article  PubMed  Google Scholar 

  8. Ferriman D, Gallwey JD (1961) Clinical assessment of body hair growth in women. J Clin Endocrinol Metab 21:1440–1447

    Article  CAS  PubMed  Google Scholar 

  9. Azziz R, Sanchez LA, Knochenhauer ES, Moran C, Lazenby J, Stephens KC, Taylor K, Boots LR (2004) Androgen excess in women: experience with over 1000 consecutive patients. J Clin Endocrinol Metab 89:453–462. https://doi.org/10.1210/jc.2003-031122

    Article  CAS  PubMed  Google Scholar 

  10. Unluhizarci K, Gokce C, Atmaca H, Bayram F, Kelestimur F (2004) A detailed investigation of hirsutism in a Turkish population: idiopathic hyperandrogenemia as a perplexing issue. Exp Clin Endocrinol Diabetes 112:504–509. https://doi.org/10.1055/s-2004-821307

    Article  CAS  PubMed  Google Scholar 

  11. Escobar-Morreale HF, Serrano-Gotarredona J, García-Robles R, Sancho J, Varela C (1997) Mild adrenal and ovarian steroidogenic abnormalities in hirsute women without hyperandrogenemia: does idiopathic hirsutism exist? Metabolism 46:902–907

    Article  CAS  PubMed  Google Scholar 

  12. Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, Monauni T, Muggeo M (2000) Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 23:57–63

    Article  CAS  PubMed  Google Scholar 

  13. Naiki Y, Kawamoto T, Mitsuuchi Y, Miyahara K, Toda K, Orii T, Imura H, Shizuta Y (1993) A nonsense mutation (TGG [Trp116]–>TAG [Stop]) in CYP11B1 causes steroid 11 beta-hydroxylase deficiency. J Clin Endocrinol Metab 77:1677–1682. https://doi.org/10.1210/jcem.77.6.7903314

    Article  CAS  PubMed  Google Scholar 

  14. Wedell A, Thilén A, Ritzén EM, Stengler B, Luthman H (1994) Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J Clin Endocrinol Metab 78:1145–1152. https://doi.org/10.1210/jcem.78.5.8175971

    Article  CAS  PubMed  Google Scholar 

  15. Chang YT, Kappy MS, Iwamoto K, Wang J, Yang X, Pang S (1993) Mutations in the type II 3 beta-hydroxysteroid dehydrogenase gene in a patient with classic salt-wasting 3 beta-hydroxysteroid dehydrogenase deficiency congenital adrenal hyperplasia. Pediatr Res 34:698–700. https://doi.org/10.1203/00006450-199311000-00026

    Article  CAS  PubMed  Google Scholar 

  16. Araújo RS, Mendonca BB, Barbosa AS, Lin CJ, Marcondes JA, Billerbeck AE, Bachega TA (2007) Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxylase deficiency. J Clin Endocrinol Metab 92:4028–4034. https://doi.org/10.1210/jc.2006-2163

    Article  CAS  PubMed  Google Scholar 

  17. Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R (1998) Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab 83:3078–3082. https://doi.org/10.1210/jcem.83.9.5090

    Article  CAS  PubMed  Google Scholar 

  18. Carmina E, Koyama T, Chang L, Stanczyk FZ, Lobo RA (1992) Does ethnicity influence the prevalence of adrenal hyperandrogenism and insulin resistance in polycystic ovary syndrome? Am J Obstet Gynecol 167:1807–1812

    Article  CAS  PubMed  Google Scholar 

  19. Lobo RA (1991) Hirsutism in polycystic ovary syndrome: current concepts. Clin Obstet Gynecol 34:817–826

    Article  CAS  PubMed  Google Scholar 

  20. Aono T, Miyazaki M, Miyake A, Kinugasa T, Kurachi K, Matsumoto K (1977) Responses of serum gonadotrophins to LH-releasing hormone and oestrogens in Japanese women with polycystic ovaries. Acta Endocrinol (Copenh) 85:840–849

    CAS  PubMed  Google Scholar 

  21. Glintborg D, Hermann AP, Brusgaard K, Hangaard J, Hagen C, Andersen M (2005) Significantly higher adrenocorticotropin-stimulated cortisol and 17-hydroxyprogesterone levels in 337 consecutive, premenopausal, Caucasian, hirsute patients compared with healthy controls. J Clin Endocrinol Metab 90:1347–1353. https://doi.org/10.1210/jc.2004-1214

    Article  CAS  PubMed  Google Scholar 

  22. Tehrani FR, Rashidi H, Azizi F (2011) The prevalence of idiopathic hirsutism and polycystic ovary syndrome in the Tehran lipid and glucose study. Reprod Biol Endocrinol 9:144. https://doi.org/10.1186/1477-7827-9-144

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mani RS, Chinnaiyan AM (2010) Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences. Nat Rev Genet 11:819–829. https://doi.org/10.1038/nrg2883

    Article  CAS  PubMed  Google Scholar 

  24. Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775. https://doi.org/10.1038/nrg2193

    Article  CAS  PubMed  Google Scholar 

  25. Rodrigues NR, Dunham I, Yu CY, Carroll MC, Porter RR, Campbell RD (1987) Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia. EMBO J 6:1653–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brønstad I, Breivik L, Methlie P, Wolff AS, Bratland E, Nermoen I, Løvås K, Husebye ES (2014) Functional studies of novel CYP21A2 mutations detected in Norwegian patients with congenital adrenal hyperplasia. Endocr Connect 3:67–74. https://doi.org/10.1530/EC-14-0032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barbaro M, Soardi FC, Östberg LJ, Persson B, de Mello MP, Wedell A, Lajic S (2015) In vitro functional studies of rare CYP21A2 mutations and establishment of an activity gradient for nonclassic mutations improve phenotype predictions in congenital adrenal hyperplasia. Clin Endocrinol (Oxf) 82:37–44. https://doi.org/10.1111/cen.12526

    Article  CAS  PubMed  Google Scholar 

  28. Koppens PF, Hoogenboezem T, Degenhart HJ (2002) Duplication of the CYP21A2 gene complicates mutation analysis of steroid 21-hydroxylase deficiency: characteristics of three unusual haplotypes. Hum Genet 111:405–410. https://doi.org/10.1007/s00439-002-0810-7

    Article  CAS  PubMed  Google Scholar 

  29. Kharrat M, Riahi A, Maazoul F, M’Rad R, Chaabouni H (2011) Detection of a frequent duplicated CYP21A2 gene carrying a Q318X mutation in a general population with quantitative PCR methods. Diagn Mol Pathol 20:123–127. https://doi.org/10.1097/PDM.0b013e3181f24807

    Article  PubMed  Google Scholar 

  30. Lekarev O, Tafuri K, Lane AH, Zhu G, Nakamoto JM, Buller-Burckle AM, Wilson TA, New MI (2013) Erroneous prenatal diagnosis of congenital adrenal hyperplasia owing to a duplication of the CYP21A2 gene. J Perinatol 33:76–78. https://doi.org/10.1038/jp.2012.5

    Article  CAS  PubMed  Google Scholar 

  31. Zhang HJ, Yang J, Zhang MN, Zhang W, Liu JM, Wang WQ, Ning G, Li XY (2009) Variations in the promoter of CYP21A2 gene identified in a Chinese patient with simple virilizing form of 21-hydroxylase deficiency. Clin Endocrinol (Oxf) 70:201–207. https://doi.org/10.1111/j.1365-2265.2008.03356.x

    Article  CAS  PubMed  Google Scholar 

  32. Baumgartner-Parzer SM, Nowotny P, Heinze G, Waldhäusl W, Vierhapper H (2005) Carrier frequency of congenital adrenal hyperplasia (21-hydroxylase deficiency) in a middle European population. J Clin Endocrinol Metab 90:775–778. https://doi.org/10.1210/jc.2004-1728

    Article  CAS  PubMed  Google Scholar 

  33. Fitness J, Dixit N, Webster D, Torresani T, Pergolizzi R, Speiser PW, Day DJ (1999) Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab 84:960–966. https://doi.org/10.1210/jcem.84.3.5550

    Article  CAS  PubMed  Google Scholar 

  34. Admoni O, Israel S, Lavi I, Gur M, Tenenbaum-Rakover Y (2006) Hyperandrogenism in carriers of CYP21 mutations: the role of genotype. Clin Endocrinol (Oxf) 64:645–651. https://doi.org/10.1111/j.1365-2265.2006.02521.x

    Article  CAS  PubMed  Google Scholar 

  35. Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI (1985) High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet 37:650–667

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sherman SL, Aston CE, Morton NE, Speiser PW, New MI (1988) A segregation and linkage study of classical and nonclassical 21-hydroxylase deficiency. Am J Hum Genet 42:830–838

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dumić M, Brkljacić L, Speiser PW, Wood E, Crawford C, Plavsić V, Baniceviác M, Radmanović S, Radica A, Kastelan A (1990) An update on the frequency of nonclassic deficiency of adrenal 21-hydroxylase in the Yugoslav population. Acta Endocrinol (Copenh) 122:703–710

    PubMed  Google Scholar 

  38. Lisurek M, Bernhardt R (2004) Modulation of aldosterone and cortisol synthesis on the molecular level. Mol Cell Endocrinol 215:149–159. https://doi.org/10.1016/j.mce.2003.11.008

    Article  CAS  PubMed  Google Scholar 

  39. Alper OM, Erengin H, Manguoğlu AE, Bilgen T, Cetin Z, Dedeoğlu N, Lüleci G (2004) Consanguineous marriages in the province of Antalya, Turkey. Ann Genet 47:129–138. https://doi.org/10.1016/j.anngen.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  40. Sahin Y, Keleştimur F (1997) The frequency of late-onset 21-hydroxylase and 11 beta-hydroxylase deficiency in women with polycystic ovary syndrome. Eur J Endocrinol 137:670–674

    Article  CAS  PubMed  Google Scholar 

  41. Thomas JL, Boswell EL, Scaccia LA, Pletnev V, Umland TC (2005) Identification of key amino acids responsible for the substantially higher affinities of human type 1 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD1) for substrates, coenzymes, and inhibitors relative to human 3beta-HSD2. J Biol Chem 280:21321–21328. https://doi.org/10.1074/jbc.M501269200

    Article  CAS  PubMed  Google Scholar 

  42. Takasawa K, Ono M, Hijikata A, Matsubara Y, Katsumata N, Takagi M, Morio T, Ohara O, Kashimada K, Mizutani S (2014) Two novel HSD3B2 missense mutations with diverse residual enzymatic activities for Delta5-steroids. Clin Endocrinol (Oxf) 80:782–789. https://doi.org/10.1111/cen.12394

    Article  CAS  PubMed  Google Scholar 

  43. Baquedano MS, Ciaccio M, Marino R, Perez Garrido N, Ramirez P, Maceiras M, Turjanski A, Defelipe LA, Rivarola MA, Belgorosky A (2015) A novel missense mutation in the HSD3B2 gene, underlying nonsalt-wasting congenital adrenal hyperplasia. New insight into the structure-function relationships of 3beta-hydroxysteroid dehidrogenase type II. J Clin Endocrinol Metab 100:E191–E196. https://doi.org/10.1210/jc.2014-2676

    Article  CAS  PubMed  Google Scholar 

  44. Marui S, Castro M, Latronico AC, Elias LL, Arnhold IJ, Moreira AC, Mendonca BB (2000) Mutations in the type II 3beta-hydroxysteroid dehydrogenase (HSD3B2) gene can cause premature pubarche in girls. Clin Endocrinol (Oxf) 52:67–75

    Article  CAS  PubMed  Google Scholar 

  45. Alos N, Moisan AM, Ward L, Desrochers M, Legault L, Leboeuf G, Van Vliet G, Simard J (2000) A novel A10E homozygous mutation in the HSD3B2 gene causing severe salt-wasting 3beta-hydroxysteroid dehydrogenase deficiency in 46, XX and 46, XY French-Canadians: evaluation of gonadal function after puberty. J Clin Endocrinol Metab 85:1968–1974. https://doi.org/10.1210/jcem.85.5.6581

    Article  CAS  PubMed  Google Scholar 

  46. Bongiovanni AM (1962) The adrenogenital syndrome with deficiency of 3 beta-hydroxysteroid dehydrogenase. J Clin Investig 41:2086–2092. https://doi.org/10.1172/JCI104666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Projects Coordination Unit of Erciyes University. Project number TCD-2014-5098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Polat.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest relevant to the subject matter or materials included in this work.

Research involving human participants and/or animals

The study was approved by the Ethics Committee of Medical School at Erciyes University. All procedures performed in studies involving human participants and/or animals were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, S., Karaburgu, S., Unluhizarci, K. et al. Unexpectedly high mutation rate of cyp11b1 compared to cyp21a2 in randomly-selected turkish women: a large screening study. J Endocrinol Invest 46, 2367–2377 (2023). https://doi.org/10.1007/s40618-023-02093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02093-5

Keywords

Navigation