Skip to main content
Log in

Thyroid function, sensitivity to thyroid hormones, and metabolic syndrome in euthyroid children and adolescents with Down syndrome

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Patients with Down Syndrome (DS) showed multiple comorbidities, including thyroid disorders, obesity, and metabolic derangement. Different thyroid hormone (THs) patterns and sensitivity to thyroid hormone indices (STHI) seem to be associated with metabolic disorders. The study’s aim was to evaluate the prevalence of metabolic syndrome (MS) in pediatric patients affected by DS, taking into consideration the relationship between the metabolic parameters, THs and STHI.

Methods

We enlisted 50 euthyroid patients with DS (9.03 ± 4.46). Clinical parameters, TSH, FT3, FT4 and the presence of MS were recorded. Indexes of peripheral sensitivity (FT3/FT4 ratio) and central sensitivity (TSH index, TSHI; TSH T4 resistance index, TT4RI; TSH T3 resistance index, TT3RI) were also detected. Thirty healthy subjects were included as a control group.

Results

MS was detected in 12% of the subjects with DS. FT3, FT4, and TSH levels were higher in DS than in the control group (p < 0.01); higher levels of FT3/FT4 ratio, TSHI and TT3RI and lower TT4RI values (p < 0.01) were also detected. A significant correlation was detected between FT3 and fasting blood glucose (FBG) (R = 0.46), triglyceride (TG) (r = 0.37), total (r = 0.55) and high density lipoprotein-cholesterol (HDL-C) (r = − 0.38), diastolic blood pressure (DBP) (r = − 0.4); FT3/FT4 ratio and waist circumference (WC) (r = 0.36); TSHI and total (r = 0.30) and HDL cholesterol (r = − 0.31); TT4RI and HDL cholesterol (r = − 0.31); TT3RI and total (r = 0.39) and HDL cholesterol (r = − 032).

Conclusion

We confirmed a higher MS prevalence in children with DS compared to the control group. A significant association between THs, STHI, and the glucose and lipid metabolism parameters was detected supporting their role in metabolic alterations related to the DS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data are contained within the article or supplementary material.

References

  1. Mégarbané A, Ravel A, Mircher C et al (2009) The 50th anniversary of the discovery of trisomy 21: the past, present, and future of research and treatment of down syndrome. Genet Med 11:611–616. https://doi.org/10.1097/GIM.0b013e3181b2e34c

    Article  PubMed  Google Scholar 

  2. Egan JFX, Benn PA, Zelop CM et al (2004) Down syndrome births in the United States from 1989 to 2001. Am J Obstet Gynecol 191:1044–1048. https://doi.org/10.1016/j.ajog.2004.06.050

    Article  PubMed  Google Scholar 

  3. Cereda A, Carey JC (2012) The trisomy 18 syndrome. Orphanet J Rare Dis 7:81. https://doi.org/10.1186/1750-1172-7-81

    Article  PubMed  PubMed Central  Google Scholar 

  4. Amr NH (2018) Thyroid disorders in subjects with down syndrome: an update. Acta Biomed 89:132–139. https://doi.org/10.2375/abm.v89i1.7120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rivelli A, Fitzpatrick V, Wales D et al (2022) Prevalence of endocrine disorders among 6078 individuals with down syndrome in the United States. J Patient Cent Res Rev 9:70–74. https://doi.org/10.1729/2330-0698.1877

    Article  PubMed  PubMed Central  Google Scholar 

  6. Calcaterra V, Crivicich E, De Silvestri A et al (2020) Timing, prevalence, and dynamics of thyroid disorders in children and adolescents affected with down syndrome. J Pediatr Endocrinol Metab 33:885–891. https://doi.org/10.1515/jpem-2020-0119

    Article  PubMed  Google Scholar 

  7. Pepe G, Corica D, De Sanctis L et al (2020) Prospective evaluation of autoimmune and non-autoimmune subclinical hypothyroidism in down syndrome children. Eur J Endocrinol 182(4):385–392. https://doi.org/10.1530/EJE-19-0823

    Article  CAS  PubMed  Google Scholar 

  8. Hetman M, Barg E (2022) Pediatric population with down syndrome: obesity and the risk of cardiovascular disease and their assessment using omics techniques-review. Biomedicines 10:3219. https://doi.org/10.3390/biomedicines10123219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oreskovic NM, Baumer NT, Di Camillo C et al (2023) Cardiometabolic profiles in children and adults with overweight and obesity and down syndrome. Am J Med Genet A 191:813–822. https://doi.org/10.1002/ajmg.a.63088

    Article  PubMed  Google Scholar 

  10. Aslam AA, Baksh RA, Pape SE et al (2022) Diabetes and obesity in down syndrome across the lifespan: a retrospective cohort study using U.K electronic health records. Diabetes Care 45:2892–2899. https://doi.org/10.2337/dc22-0482

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoermann R, Midgley JEM, Larisch R, Dietrich JW (2015) Homeostatic control of the thyroid-pituitary axis: perspectives for diagnosis and treatment. Front Endocrinol 6:177. https://doi.org/10.3389/fendo.2015.00177

    Article  Google Scholar 

  12. Mullur R, Liu Y-Y, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94:355–382. https://doi.org/10.1152/physrev.00030.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Teixeira PFDS, Dos Santos PB, Pazos-Moura CC (2020) The role of thyroid hormone in metabolism and metabolic syndrome. Ther Adv Endocrinol Metab. https://doi.org/10.1177/2042018820917869

    Article  PubMed  PubMed Central  Google Scholar 

  14. He J, Lai Y, Yang J et al (2021) The relationship between thyroid function and metabolic syndrome and its components: a cross-sectional study in a Chinese population. Front Endocrinol 12:661160. https://doi.org/10.3389/fendo.2021.661160

    Article  Google Scholar 

  15. Mehran L, Delbari N, Amouzegar A et al (2022) Reduced sensitivity to thyroid hormone is associated with diabetes and hypertension. J Clin Endocrinol Metab 107:167–176. https://doi.org/10.1210/clinem/dgab646

    Article  PubMed  Google Scholar 

  16. Zhang X, Chen Y, Ye H et al (2022) Correlation between thyroid function, sensitivity to thyroid hormones and metabolic dysfunction-associated fatty liver disease in euthyroid subjects with newly diagnosed type 2 diabetes. Endocrine. https://doi.org/10.1007/s12020-022-03279-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lin J, Xiang X, Qin Y et al (2022) Correlation of thyroid-related hormones with vascular complications in type 2 diabetes patients with euthyroid. Front Endocrinol. https://doi.org/10.3389/fendo.2022.1037969

    Article  Google Scholar 

  18. Yu L, Li Z, Yang R et al (2022) Impaired sensitivity to thyroid hormones is associated with elevated blood glucose in coronary heart disease. Front Endocrinol. https://doi.org/10.3389/fendo.2022.895843

    Article  Google Scholar 

  19. Calcaterra V, Biganzoli G, Pelizzo G et al (2021) A multivariate pattern analysis of metabolic profile in neurologically impaired children and adolescents. Children 8:186. https://doi.org/10.3390/children8030186

    Article  PubMed  PubMed Central  Google Scholar 

  20. Calcaterra V, Biganzoli G, Ferraro S et al (2022) Thyroid function and metabolic syndrome in children and adolescents with neuromotor disability. Children 9:1531. https://doi.org/10.3390/children9101531

    Article  PubMed  PubMed Central  Google Scholar 

  21. World Health Organization WHO Body mass inder-for-age (BMI-for-age). https://www.who.int/toolkits/child-growth-standards/standards/body-mass-index-for-age-bmi-for-age

  22. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303. https://doi.org/10.1136/adc.44.235.291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23. https://doi.org/10.1136/adc.45.239.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calcaterra V, De Silvestri A, Schneider L et al (2021) Acanthosis nigricans in children and adolescents with type 1 diabetes or obesity: the potential interplay role between insulin resistance and excess weight. Children 8:710. https://doi.org/10.3390/children8080710

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tropeano A, Corica D, Li Pomi A et al (2021) The metabolic syndrome in pediatrics: do we have a reliable definition? a systematic review. Eur J Endocrinol 185(2):265–278. https://doi.org/10.1530/EJE-21-0238

    Article  CAS  PubMed  Google Scholar 

  26. Laclaustra M, Moreno-Franco B, Lou-Bonafonte JM et al (2019) Impaired sensitivity to thyroid hormones is associated with diabetes and metabolic syndrome. Diabetes Care 42:303–310. https://doi.org/10.2337/dc18-1410

    Article  CAS  PubMed  Google Scholar 

  27. Moreau M, Benhaddou S, Dard R et al (2021) Metabolic diseases and down syndrome: how are they linked together? Biomedicines 9:221. https://doi.org/10.3390/biomedicines9020221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mortimer GL, Gillespie KM (2020) Early onset of autoimmune diabetes in children with down syndrome-two separate aetiologies or an immune system pre-programmed for autoimmunity? Curr Diab Rep 20:47. https://doi.org/10.1007/s11892-020-01318-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calcaterra V, Regalbuto C, Porri D et al (2020) Inflammation in obesity-related complications in children: the protective effect of diet and its potential role as a therapeutic agent. Biomolecules 10:1324. https://doi.org/10.3390/biom10091324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calcaterra V, Verduci E, Vandoni M et al (2022) The effect of healthy lifestyle strategies on the management of insulin resistance in children and adolescents with obesity: a narrative review. Nutrients 14:4692. https://doi.org/10.3390/nu14214692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bertapelli F, Pitetti K, Agiovlasitis S, Guerra-Junior G (2016) Overweight and obesity in children and adolescents with down syndrome-prevalence, determinants, consequences, and interventions: a literature review. Res Dev Disabil 57:181–192. https://doi.org/10.1016/j.ridd.2016.06.018

    Article  PubMed  Google Scholar 

  32. Nie X, Ma X, Xu Y et al (2020) Increased serum adipocyte fatty acid-binding protein levels are associated with decreased sensitivity to thyroid hormones in the euthyroid population. Thyroid 30:1718–1723. https://doi.org/10.1089/thy.2020.0011

    Article  CAS  PubMed  Google Scholar 

  33. Lai S, Li J, Wang Z et al (2021) Sensitivity to thyroid hormone indices are closely associated with NAFLD. Front Endocrinol. https://doi.org/10.3389/fendo.2021.766419

    Article  Google Scholar 

  34. Lambadiari V, Mitrou P, Maratou E et al (2011) Thyroid hormones are positively associated with insulin resistance early in the development of type 2 diabetes. Endocrine 39:28–32. https://doi.org/10.1007/s12020-010-9408-3

    Article  CAS  PubMed  Google Scholar 

  35. Iwen KA, Schröder E, Brabant G (2013) Thyroid hormones and the metabolic syndrome. Eur Thyroid J 2:83–92. https://doi.org/10.1159/000351249

    Article  PubMed  PubMed Central  Google Scholar 

  36. Corica D, Licenziati MR, Calcaterra V et al (2022) Central and peripheral sensitivity to thyroid hormones and glucose metabolism in prepubertal children with obesity: pilot multicenter evaluation. Endocrine. https://doi.org/10.1007/s12020-022-03276-5

    Article  PubMed  Google Scholar 

  37. Hage M, Zantout MS, Azar ST (2011) Thyroid disorders and diabetes mellitus. J Thyroid Res. https://doi.org/10.4061/2011/439463

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang C (2013) The relationship between type 2 diabetes mellitus and related thyroid diseases. J Diabetes Res. https://doi.org/10.1155/2013/390534

    Article  PubMed  PubMed Central  Google Scholar 

  39. David Gangte DH (2013) Thyroid status in diabetes mellitus. J Glycomics Lipidomics. https://doi.org/10.4172/2153-0637.1000106

    Article  Google Scholar 

  40. Catanese V, Kahn C (2001) Secondary forms of diabetes mellitus. Principals and practice of endocrinology and metabolism. Lippincott Williams & Wilkins, Philadelphia PA, pp 1327–1336

    Google Scholar 

  41. Pucci E, Chiovato L, Pinchera A (2000) Thyroid and lipid metabolism. Int J Obes Relat Metab Disord 24(Suppl 2):S109-112. https://doi.org/10.1038/sj.ijo.0801292

    Article  CAS  PubMed  Google Scholar 

  42. Asvold BO, Vatten LJ, Nilsen TIL, Bjøro T (2007) The association between TSH within the reference range and serum lipid concentrations in a population-based study the HUNT study. Eur J Endocrinol 156:181–186. https://doi.org/10.1530/eje.1.02333

    Article  CAS  PubMed  Google Scholar 

  43. Danzi S, Klein I (2003) Thyroid hormone and blood pressure regulation. Curr Hypertens Rep 5:513–520. https://doi.org/10.1007/s11906-003-0060-7

    Article  PubMed  Google Scholar 

  44. Tropeano A, Corica D, Curatola S et al (2023) The effect of obesity-related allostatic changes on cardio-metabolic risk in euthyroid children. J Endocrinol Invest 46(2):285–295. https://doi.org/10.1007/s40618-022-01899-z

    Article  CAS  PubMed  Google Scholar 

  45. Baş VN, Aycan Z, Ağladıoğlu SY, Kendirci HN (2013) Prevalence of hyperthyrotropinemia in obese children before and after weight loss. Eat Weight Disord 18(1):87–90. https://doi.org/10.1007/s40519-013-0008-0

    Article  PubMed  Google Scholar 

  46. Shalitin S, Yackobovitch-Gavan M, Phillip M (2009) Prevalence of thyroid dysfunction in obese children and adolescents before and after weight reduction and its relation to other metabolic parameters. Horm Res 71(3):155–161. https://doi.org/10.1159/000197872

    Article  CAS  PubMed  Google Scholar 

  47. Urrea CR, Pedroso AP, Thomazini F et al (2023) Thyroid axis hormones and anthropometric recovery of children/adolescents with overweight/obesity: a scoping review. Front Nutr. https://doi.org/10.3389/fnut.2022.1040167

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Vivi Down Onlus Association (Milano, Italy) for the research support and Dr. Cinzia Barlera for the support nurses in conducting the study.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Calcaterra.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethics approval

The study was performed according to the recommendations and approval of our Institute’s ethics committee (Protocol number n. 2021/ST/207. Protocol register n. 0016834, 04/04/2022, CE Area 1 Milan, Italy) and according to the Declaration of Helsinki as revised in 2013.

Informed consent

Informed consent was obtained from each patient and/or their responsible guardian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calcaterra, V., Gazzarri, A., De Silvestri, A. et al. Thyroid function, sensitivity to thyroid hormones, and metabolic syndrome in euthyroid children and adolescents with Down syndrome. J Endocrinol Invest 46, 2319–2325 (2023). https://doi.org/10.1007/s40618-023-02086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02086-4

Keywords

Navigation