Skip to main content

Advertisement

Log in

Endocrine-disrupting chemicals (EDCs) and cancer: new perspectives on an old relationship

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Environmental endocrine-disrupting chemicals (EDCs) are a mixture of chemical compounds capable to interfere with endocrine axis at different levels and to which population is daily exposed. This paper aims to review the relationship between EDCs and breast, prostate, testicle, ovary, and thyroid cancer, discussing carcinogenic activity of known EDCs, while evaluating the impact on public health.

Methods

A literature review regarding EDCs and cancer was carried out with particular interest on meta-analysis and human studies.

Results

The definition of EDCs has been changed through years, and currently there are no common criteria to test new chemicals to clarify their possible carcinogenic activity. Moreover, it is difficult to assess the full impact of human exposure to EDCs because adverse effects develop latently and manifest at different ages, even if preclinical and clinical evidence suggest that developing fetus and neonates are most vulnerable to endocrine disruption.

Conclusion

EDCs represent a major environmental and health issue that has a role in cancer development. There are currently some EDCs that can be considered as carcinogenic, like dioxin and cadmium for breast and thyroid cancer; arsenic, asbestos, and dioxin for prostate cancer; and organochlorines/organohalogens for testicular cancer. New evidence supports the role of other EDCs as possible carcinogenic and pregnant women should avoid risk area and exposure. The relationship between EDCs and cancer supports the need for effective prevention policies increasing public awareness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

ADAM33:

Metalloproteinase domain 33

AhR:

Hydrocarbon receptor

ASR:

Age-standardized rate

BPA:

Bisphenol A

BPAF:

Bisphenol-AF

DEHP:

Di(2-ethylhexyl)phthalate

DES:

Diethylstilbestrol

DTC:

Differentiated thyroid carcinoma

DTT:

Dichloro-diphenyl-trichloroethane

EDCs:

Endocrine-disrupting chemicals

ERs:

Estrogen receptors

ER-α:

Estrogen receptor-α

GPI:

Glycosylphosphatidylinositol

HR:

Hazard ratio

IARC:

International Agency for Research on Cancer

ΣLMWP:

Low molecular weight phthalates

MBzP:

Mono-benzyl phthalate

MEC:

Multiethnic cohort

MiBP:

Mono-2-isobutyl phthalate

MSWI:

Municipal solid waste incinerator

NHANES:

National Health and Nutrition Examination Survey

NPCSs:

National Priority Contaminated Sites

NG:

Nodular goiter

OC:

Ovarian cancer

OR:

Odd ratio

PAHs:

Polycyclic aromatic hydrocarbons

PBDE:

Polybrominated diphenyl ethers

PCa:

Prostate cancer

PCBs:

Polychlorinated biphenyls

POPs:

Persistent organic pollutants

PPAR:

Human peroxisome proliferator-activated receptor

PSCA:

Prostate stem cell antigen

PTC:

Papillary thyroid carcinoma

RR:

Relative risk

SERM:

Selective estrogen receptor modulator

TCDD:

Tetrachlorodibenzodioxin

TGCC:

Testicular cancer germ cell

UNEP:

United Nations Environment Programme

WC:

Waist circumference

WHO:

World Health Organization

2-OH-NAP:

2-Hydroxynaphthalene

References

  1. Gassner FX, Reifenstein EC, Algeo JW, Mattox WE (1958) Effects of hormones on growth, fattening, and meat production potential of livestock. Recent Prog Horm Res 14:183–217

    CAS  PubMed  Google Scholar 

  2. Borgert CJ, Sargent E, v., Casella G, Dietrich DR, McCarty LS, Golden RJ. (2012) The human relevant potency threshold: Reducing uncertainty by human calibration of cumulative risk assessments. Regul Toxicol Pharmacol 62(2):313–328

    Article  CAS  PubMed  Google Scholar 

  3. Newbold RR, McLachlan JA, Bullock BC (1985) Progressive proliferative changes in the oviduct of mice following developmental exposure to diethylstilbestrol. Teratog Carcinog Mutagen 5(6):473–480

    Article  CAS  PubMed  Google Scholar 

  4. McLachlan JA, Bullock BC, Newbold RR (1980) Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res 40(11):3988–3999

    CAS  PubMed  Google Scholar 

  5. Martin O v., Geueke B, Groh KJ, Chevrier J, Fini JB, Houlihan J, et al. 2018 Protocol for a systematic map of the evidence of migrating and extractable chemicals from food contact articles. 2018 Dec 23 [cited 2022 Jul 18]; Available from: https://doi.org/10.5281/zenodo.2525277#.YtXPRv6UOPE.mendeley

  6. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM et al (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 30(4):293–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jenkins S, Rowell C, Wang J, Lamartiniere CA (2007) Prenatal TCDD exposure predisposes for mammary cancer in rats. Reprod Toxicol 23(3):391–396

    Article  CAS  PubMed  Google Scholar 

  9. Soto AM, Sonnenschein C (2010) Environmental causes of cancer: endocrine disruptors as carcinogens. Nat Rev Endocrinol 6(7):363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buha A, Matovic V, Antonijevic B, Bulat Z, Curcic M, Renieri EA et al (2018) Overview of cadmium thyroid disrupting effects and mechanisms. Int J Mol Sci 19(5):1501

    Article  PubMed  PubMed Central  Google Scholar 

  11. List of Classifications – IARC Monographs on the Identification of Carcinogenic Hazards to Humans [Internet]. [cited 2022 Jul 18]. Available from: https://monographs.iarc.who.int/list-of-classifications

  12. Substances identified as endocrine disruptors at EU level | Endocrine Disruptor List [Internet]. [cited 2022 Jul 18]. Available from: https://edlists.org/the-ed-lists/list-i-substances-identified-as-endocrine-disruptors-by-the-eu

  13. Substances under evaluation for endocrine disruption under an EU legislation | Endocrine Disruptor List [Internet]. [cited 2022 Jul 18]. Available from: https://edlists.org/the-ed-lists/list-ii-substances-under-eu-investigation-endocrine-disruption

  14. Substances considered, by the evaluating National Authority, to have endocrine disrupting properties | Endocrine Disruptor List [Internet]. [cited 2022 Jul 18]. Available from: https://edlists.org/the-ed-lists/list-iii-substances-identified-as-endocrine-disruptors-by-participating-national-authorities

  15. Global assessment on the state of the science of endocrine disruptors [Internet]. [cited 2022 Jul 19]. Available from: https://apps.who.int/iris/handle/10665/67357

  16. Thomas Zoeller R, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM et al (2012) Endocrine-disrupting chemicals and public health protection: a statement of principles from the endocrine society. Endocrinology 153(9):4097–4110

    Article  PubMed  PubMed Central  Google Scholar 

  17. Endocrine Disruptors: from Scientific Evidence to Human Health Protection [Internet]. [cited 2022 Jul 19]. Available from: https://www.europarl.europa.eu/RegData/etudes/STUD/2019/608866/IPOL_STU(2019)608866_EN.pdf

  18. Di Donato M, Cernera G, Giovannelli P, Galasso G, Bilancio A, Migliaccio A et al (2017) Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol Cell Endocrinol 457:35–42

    Article  PubMed  Google Scholar 

  19. Patrick SM, Bornman MS, Joubert AM, Pitts N, Naidoo V, de Jager C (2016) Effects of environmental endocrine disruptors, including insecticides used for malaria vector control on reproductive parameters of male rats. Reprod Toxicol 61:19–27

    Article  CAS  PubMed  Google Scholar 

  20. Kilian E, Delport R, Bornman MS, de Jager C (2007) Simultaneous exposure to low concentrations of dichlorodiphenyltrichloroethane, deltamethrin, nonylphenol and phytoestrogens has negative effects on the reproductive parameters in male Spraque-Dawley rats. Andrologia 39(4):128–135

    Article  CAS  PubMed  Google Scholar 

  21. Safe S, Wang F, Porter W, Duan R, McDougal A (1998) Ah receptor agonists as endocrine disruptors: antiestrogenic activity and mechanisms. Toxicol Lett 102:343–347

    Article  PubMed  Google Scholar 

  22. Burgio E, Piscitelli P, Colao A (2018) Environmental Carcinogenesis and transgenerational transmission of carcinogenic risk: from genetics to epigenetics. Int J Environ Res Public Health 15(8):1791

    Article  PubMed  PubMed Central  Google Scholar 

  23. Choi SM, Lee BM (2004) An alternative mode of action of endocrine-disrupting chemicals and chemoprevention. J Toxicol Environ Health B Crit 7(6):451–463

    Article  CAS  Google Scholar 

  24. Siegel RL, Miller KD, Jemal A (2020) 2020 Cancer statistics. CA Cancer J Clin 70(1):7–30

    Article  PubMed  Google Scholar 

  25. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  26. Nur U, el Reda D, Hashim D, Weiderpass E (2019) A prospective investigation of oral contraceptive use and breast cancer mortality: findings from the Swedish women’s lifestyle and health cohort. BMC Cancer 19(1):1–9

    Article  CAS  Google Scholar 

  27. Wan MLY, Co VA, El-Nezami H (2021) Endocrine disrupting chemicals and breast cancer: a systematic review of epidemiological studies. Crit Rev Food Sci Nutr 62(24):6549–6576

    Article  PubMed  Google Scholar 

  28. Marinković N, Pašalić D, Ferenčak G, Gršković B, Rukavina AS (2010) Dioxins and human toxicity. Arh Hig Rada Toksikol 61(4):445–453

    Article  PubMed  Google Scholar 

  29. Hockings JK, Thorne PA, Kemp MQ, Morgan SS, Selmin O, Romagnolo DF (2006) The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen. Cancer Res 66(4):2224–2232

    Article  CAS  PubMed  Google Scholar 

  30. Warner M, Eskenazi B, Mocarelli P, Gerthoux PM, Samuels S, Needham L et al (2002) Serum dioxin concentrations and breast cancer risk in the Seveso Women’s Health Study. Environ Health Perspect 110(7):625–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Warner M, Mocarelli P, Samuels S, Needham L, Brambilla P, Eskenazi B (2011) Dioxin exposure and cancer risk in the seveso women’s health study. Environ Health Perspect 119(12):1700–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. VoPham T, Bertrand KA, Jones RR, Deziel NC, DuPré NC, James P et al (2020) Dioxin exposure and breast cancer risk in a prospective cohort study. Environ Res 186:109516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Danjou AMN, Coudon T, Praud D, Lévêque E, Faure E, Salizzoni P et al (2019) Long-term airborne dioxin exposure and breast cancer risk in a case-control study nested within the French E3N prospective cohort. Environ Int 124:236–248

    Article  CAS  PubMed  Google Scholar 

  34. Polychlorinated Dibenzo-para-dioxins and Polychlorinated Dibenzofurans - NCBI Bookshelf [Internet]. [cited 2022 Jul 19]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK409980/

  35. Filippini T, Torres D, Lopes C, Carvalho C, Moreira P, Naska A et al (2020) Cadmium exposure and risk of breast cancer: a dose-response meta-analysis of cohort studies. Environ Int 142:105879

    Article  CAS  PubMed  Google Scholar 

  36. Tarhonska K, Lesicka M, Janasik B, Roszak J, Reszka E, Braun M et al (2022) Cadmium and breast cancer - current state and research gaps in the underlying mechanisms. Toxicol Lett 361:29–42

    Article  CAS  PubMed  Google Scholar 

  37. Ali I, Damdimopoulou P, Stenius U, Adamsson A, Mäkelä SI, Åkesson A et al (2012) Cadmium-induced effects on cellular signaling pathways in the liver of transgenic estrogen reporter mice. Toxicological Sci 127(1):66–75

    Article  CAS  Google Scholar 

  38. Kluxen FM, Diel P, Höfer N, Becker E, Degen GH (2013) The metallohormone cadmium modulates AhR-associated gene expression in the small intestine of rats similar to ethinyl-estradiol. Arch Toxicol 87(4):633–643

    Article  CAS  PubMed  Google Scholar 

  39. Shan Z, Wei Z, Shaikh ZA (2018) Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in triple-negative breast cancer cells. Toxicol Appl Pharmacol 1(356):36–43

    Article  Google Scholar 

  40. Wei Z, Shan Z, Shaikh ZA (2018) Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail. Toxicol Appl Pharmacol 1(344):46–55

    Article  Google Scholar 

  41. Luevano J, Damodaran C (2014) A review of molecular events of cadmium-induced carcinogenesis. J Environ Pathol Toxicol Oncol 33(3):183–194

    Article  PubMed  PubMed Central  Google Scholar 

  42. Benedetti M, Zona A, Beccaloni E, Carere M, Comba P (2017) Incidence of breast, prostate, testicular, and thyroid cancer in italian contaminated sites with presence of substances with endocrine disrupting properties. Int J Environ Res Public Health 14(4):355

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zona A, Iavarone I, Buzzoni C, Conti S, Santoro M, Fazzo L et al (2019) [SENTIERI epidemiological study of residents in national priority contaminated sites fifth report]. Epidemiol Prev 43(2):1–208

    PubMed  Google Scholar 

  44. Sengupta S, Obiorah I, Maximov PY, Curpan R, Jordan VC (2013) Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells. Br J Pharmacol 169(1):167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim JY, Choi HG, Lee HM, Lee GA, Hwang KA, Choi KC (2017) Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells. J Biomed Res 31(4):358–369

    Article  PubMed  PubMed Central  Google Scholar 

  46. Markey CM, Luque EH, de Toro MM, Sonnenschein C, Soto AM (2001) In utero exposure to bisphenol a alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65(4):1215–1223

    Article  CAS  PubMed  Google Scholar 

  47. Acevedo N, Davis B, Schaeberle CM, Sonnenschein C, Soto AM (2013) Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect. https://doi.org/10.1289/ehp.1306734

    Article  PubMed  PubMed Central  Google Scholar 

  48. Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Latendresse JR, Olson GR et al (2014) Toxicity evaluation of bisphenol a administered by gavage to sprague dawley rats from gestation day 6 through postnatal day 90. Toxicol Sci 139(1):174–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu G, Cai W, Liu H, Jiang H, Bi Y, Wang H (2021) The Association of Bisphenol a and phthalates with risk of breast cancer: a meta-analysis. Int J Environ Res Public Health 18(5):1–15

    Article  Google Scholar 

  50. Elstner E, Müller C, Koshizuka K, Williamson EA, Park D, Asou H et al (1998) Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci U S A 95(15):8806–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang PJ, Hou MF, Tsai EM, Liang SS, Chiu CC, Ou-Yang F et al (2018) Breast cancer is associated with methylation and expression of the a disintegrin and metalloproteinase domain 33 (ADAM33) gene affected by endocrine-disrupting chemicals. Oncol Rep 40(5):2766–2777

    CAS  PubMed  Google Scholar 

  52. Wu AH, Franke AA, Wilkens LR, Tseng C, Conroy SM, Li Y et al (2021) Urinary phthalate exposures and risk of breast cancer: the Multiethnic Cohort study. Breast Cancer Res 23(1):1–15

    Article  Google Scholar 

  53. Gandaglia G, Leni R, Bray F, Fleshner N, Freedland SJ, Kibel A et al (2021) Epidemiology and prevention of prostate cancer. Eur Urol Oncol. 4(6):877–892

    Article  PubMed  Google Scholar 

  54. Yang Y, McDonald AC, Wang X, Pan Y, Wang M (2022) Arsenic exposures and prostate cancer risk: a multilevel meta-analysis. J Trace Elem Med Biol 72:126992

    Article  Google Scholar 

  55. Ahn J, Boroje IJ, Ferdosi H, Kramer ZJ, Lamm SH (2020) Prostate cancer incidence in U.S counties and low levels of arsenic in drinking water. Int J Environ Res Public Health 17(3):960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cardoso APF, Al-Eryani L, Christopher SJ (2018) Arsenic-Induced Carcinogenesis: the Impact of miRNA Dysregulation. Toxicol Sci 165(2):284–290

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shearer MJJ, Wold EA, Umbaugh CS, Lichti CF, Nilsson CL, Figueiredo ML (2016) Inorganic arsenic-related changes in the stromal tumor microenvironment in a prostate cancer cell-conditioned media model. Environ Health Perspect 124(7):1009–1015

    Article  CAS  PubMed  Google Scholar 

  58. Chen C, Xun P, Nishijo M, Carter S, He K (2016) Cadmium exposure and risk of prostate cancer: a meta-analysis of cohort and case-control studies among the general and occupational populations. Sci Rep 6(1):1–7

    Google Scholar 

  59. Eriksen KT, Halkjær J, Meliker JR, McElroy JA, Sørensen M, Tjønneland A et al (2015) Dietary cadmium intake and risk of prostate cancer: a Danish prospective cohort study. BMC Cancer 15(1):1–7

    Article  CAS  Google Scholar 

  60. Vijayakumar V, Abern MR, Jagai JS, Kajdacsy-balla A (2021) Observational study of the association between air cadmium exposure and prostate cancer aggressiveness at diagnosis among a nationwide retrospective cohort of 230,540 patients in the united states. Int J Environ Res Public Health 18(16):8333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dutheil F, Zaragoza-Civale L, Pereira B, Mermillod M, Julien BS et al (2020) Prostate cancer and asbestos: a systematic review and meta-analysis. Perm J. https://doi.org/10.7812/TPP/19.086

    Article  PubMed  PubMed Central  Google Scholar 

  62. Krstev S, Knutsson A (2022) Occupational risk factors for prostate cancer: a meta-analysis. J Cancer Prev 24(2):91–111

    Article  Google Scholar 

  63. Gandaglia G, Leni R, Bray F, Fleshner N, Freedland SJ, Kibel A et al (2021) Epidemiology and prevention of prostate cancer. Eur Urol Oncol 4(6):877–892

    Article  PubMed  Google Scholar 

  64. Ali I, Julin B, Glynn A, Högberg J, Berglund M, Johansson JE et al (2016) Exposure to polychlorinated biphenyls and prostate cancer: population-based prospective cohort and experimental studies. Carcinogenesis 37(12):1144–1151

    CAS  PubMed  Google Scholar 

  65. Ruder AM, Hein MJ, Hopf NB, Waters MA (2017) Cancer incidence among capacitor manufacturing workers exposed to polychlorinated biphenyls. Am J Ind Med 60(2):198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moore RW, Fritz WA, Schneider AJ, Lin TM, Branam AM, Safe S et al (2016) 2,3,7,8-Tetrachlorodibenzo-p-dioxin has both pro-carcinogenic and anti-carcinogenic effects on neuroendocrine prostate carcinoma formation in TRAMP mice. Toxicol Appl Pharmacol 305:242–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Medicine I of. Veterans and Agent Orange: Update 2012. Veterans and Agent Orange: Update 2012. 2013 Dec 4;1–986.

  68. Akhtar FZ, Garabrant DH, Ketchum NS, Michalek JE. Cancer in US Air Force veterans of the Vietnam War. J Occup Environ Med [Internet]. 2004 Feb [cited 2022 Jul 20];46(2):123–36. Available from: https://pubmed.ncbi.nlm.nih.gov/14767215/

  69. Chamie K, DeVere White RW, Lee D, Ok JH, Ellison LM. Agent Orange exposure, Vietnam War veterans, and the risk of prostate cancer. Cancer [Internet]. 2008 Nov 1 [cited 2022 Jul 20];113(9):2464–70. Available from: https://pubmed.ncbi.nlm.nih.gov/18666213/

  70. Ansbaugh N, Shannon J, Mori M, Farris PE, Garzotto M. Agent Orange as a risk factor for high-grade prostate cancer. Cancer [Internet]. 2013 Jul 1 [cited 2022 Jul 20];119(13):2399–404. Available from: https://pubmed.ncbi.nlm.nih.gov/23670242/

  71. Prins GS, Ye SH, Birch L, Zhang X, Cheong A, Lin H, et al. Prostate Cancer Risk and DNA Methylation Signatures in Aging Rats following Developmental BPA Exposure: A Dose-Response Analysis. Environ Health Perspect [Internet]. 2017 Jul 1 [cited 2022 Jul 20];125(7). Available from: https://pubmed.ncbi.nlm.nih.gov/28728135/

  72. Prins GS, Hu WY, Xie L, Shi G bin, Hu DP, Birch L, et al. Evaluation of Bisphenol A (BPA) Exposures on Prostate Stem Cell Homeostasis and Prostate Cancer Risk in the NCTR-Sprague-Dawley Rat: An NIEHS/FDA CLARITY-BPA Consortium Study. Environ Health Perspect [Internet]. 2018 Nov 1 [cited 2022 Jul 20];126(11). Available from: https://pubmed.ncbi.nlm.nih.gov/30387366/

  73. Tarapore P, Ying J, Ouyang B, Burke B, Bracken B, Ho SM. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS One [Internet]. 2014 Mar 3 [cited 2022 Jul 20];9(3). Available from: https://pubmed.ncbi.nlm.nih.gov/24594937/

  74. Xia B, Wang Y, Wang X, Wu J, Song Q, Sun Z et al (2018) In utero and lactational exposure of DEHP increases the susceptibility of prostate carcinogenesis in male offspring through PSCA hypomethylation. Toxicol Lett 1(292):78–84

    Article  Google Scholar 

  75. Gu Z, Thomas G, Yamashiro J, Shintaku IP, Dorey F, Raitano A, et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene [Internet]. 2000 Mar 2 [cited 2022 Jul 20];19(10):1288–96. Available from: https://pubmed.ncbi.nlm.nih.gov/10713670/

  76. Chuang SC, Chen HC, Sun CW, Chen YA, Wang YH, Chiang CJ et al (2020) Phthalate exposure and prostate cancer in a population-based nested case-control study. Environ Res 1(181):108902

    Article  Google Scholar 

  77. Elix C, Pal S, Jones J. The role of peroxisome proliferator-activated receptor gamma in prostate cancer. Asian J Androl [Internet]. 2018 May 1 [cited 2022 Jul 20];20(3):238–43. Available from: https://pubmed.ncbi.nlm.nih.gov/28597850/

  78. Lapinskas PJ, Brown S, Leesnitzer LM, Blanchard S, Swanson C, Cattley RC, et al. Role of PPARalpha in mediating the effects of phthalates and metabolites in the liver. Toxicology [Internet]. 2005 Feb 1 [cited 2022 Jul 20];207(1):149–63. Available from: https://pubmed.ncbi.nlm.nih.gov/15590130/

  79. Krüger T, Long M, Bonefeld-Jørgensen EC. Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor. Toxicology [Internet]. 2008 Apr 18 [cited 2022 Jul 20];246(2–3):112–23.

  80. Richmond O, Ghotbaddini M, Allen C, Walker A, Zahir S, Powell JB (2014) The aryl hydrocarbon receptor is constitutively active in advanced prostate cancer cells. PLoS ONE 9(4):e95058

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rajpert-De ME (2006) Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update 12(3):303–323

    Article  Google Scholar 

  82. DuMond JW, Singh KP (2007) Gene expression changes and induction of cell proliferation by chronic exposure to arsenic of mouse testicular Leydig cells. J Toxicol Environ Health A 70(13):1150–1154

    Article  CAS  PubMed  Google Scholar 

  83. Bräuner E, v., Lim YH, Koch T, Uldbjerg CS, Gregersen LS, Pedersen MK, et al (2021) Endocrine disrupting chemicals and risk of testicular cancer: a systematic review and meta-analysis. J Clin Endocrinol Metab 106(12):E4834–E4860

    PubMed  PubMed Central  Google Scholar 

  84. Cheng Z, Zhang X, Bassig B, Hauser R, Holford TR, Zheng E et al (2021) Serum polychlorinated biphenyl (PCB) levels and risk of testicular germ cell tumors: A population-based case-control study in Connecticut and Massachusetts. Environ Pollut 273:116453

    Article  Google Scholar 

  85. Cheng Z, Zhang X, Bassig B, Hauser R, Holford TR, Zheng E et al (2021) Dataset of testicular germ cell tumors (TGCT) risk associated with serum polychlorinated biphenyl (PCB) by age at diagnosis and histologic types. Data Brief 36:107014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hardell L, van Bavel B, Lindström G, Carlberg M, Eriksson M, Dreifaldt AC et al (2004) Concentrations of polychlorinated biphenyls in blood and the risk for testicular cancer. Int J Androl 27(5):282–290

    Article  CAS  PubMed  Google Scholar 

  87. Gaona-Luviano P, Adriana L, Medina-Gaona, Magaña-Pérez K.2020 Epidemiology of ovarian cancer. Chin Clin Oncol. 9(4).

  88. Davis BJ, McCurdy EA, Miller BD, Lucier GW, Tritscher AM (2000) Ovarian tumors in rats induced by chronic 2,3,7,8-Tetrachlorodibenzo-p-dioxin treatment. Cancer Res 60(19):5414–5419

    CAS  PubMed  Google Scholar 

  89. Donna A, Crosignani P, Robutti F, Betta PG, Bocca R, Mariani N et al (1989) Triazine herbicides and ovarian epithelial neoplasms. Scand J Work Environ Health 15(1):47–53

    Article  CAS  PubMed  Google Scholar 

  90. de Roos AJ, Blair A, Rusiecki JA, Hoppin JA, Svec M, Dosemeci M et al (2005) Cancer incidence among glyphosate-exposed pesticide applicators in the agricultural health study. Environ Health Perspect 113(1):49–54

    Article  PubMed  Google Scholar 

  91. Xie L, Mo M, Jia HX, Liang F, Yuan J, Zhu J (2016) Association between dietary nitrate and nitrite intake and sitespecific cancer risk: evidence from observational studies. Oncotarget 7(35):56915–56932

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nettore IC, Colao A, Macchia PE (2018) Nutritional and environmental factors in thyroid carcinogenesis. Int J Environ Res Public Health 15(8):1735

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fiore M, Conti GO, Caltabiano R, Buffone A, Zuccarello P, Cormaci L et al (2019) Role of emerging environmental risk factors in thyroid cancer: a brief review. Int J Environ Res Public Health 16(7):1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van Gerwen M, Gold B, Alsen M, Khan MN, Petrick L, Genden E (2021) High thyroid cancer incidence rate in a community near a landfill: a descriptive epidemiological assessment. Toxics. 9(12):325

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fernández-Navarro P, García-Pérez J, Ramis R, Boldo E, López-Abente G (2012) Proximity to mining industry and cancer mortality. Sci Total Environ 435:66–73

    Article  PubMed  Google Scholar 

  96. Liu B, Chen Y, Li S, Xu Y, Wang Y (2021) Relationship between urinary metabolites of polycyclic aromatic hydrocarbons and risk of papillary thyroid carcinoma and nodular goiter: a case-control study in non-occupational populations. Environ Pollut 269:116158

    Article  CAS  PubMed  Google Scholar 

  97. Calafat AM, Ye X, Valentin-Blasini L, Li Z, Mortensen ME, Wong LY (2017) Co-exposure to non-persistent organic chemicals among American pre-school aged children: a pilot study. Int J Hyg Environ Health 220(2):55–63

    Article  CAS  PubMed  Google Scholar 

  98. Marotta V, Russo G, Gambardella C, Grasso M, la Sala D, Chiofalo MG et al (2019) Human exposure to bisphenol AF and diethylhexylphthalate increases susceptibility to develop differentiated thyroid cancer in patients with thyroid nodules. Chemosphere 1(218):885–894

    Article  Google Scholar 

  99. Gorini F, Bustaffa E, Coi A, Iervasi G, Bianchi F (2020) Bisphenols as environmental triggers of thyroid dysfunction: clues and evidence. Int J Environ Res Public Health 17(8):2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kelly M, Connolly L, Dean M (2020) Public awareness and risk perceptions of endocrine disrupting chemicals: a qualitative study. Int J Environ Res Public Health 17(21):1–16

    Article  Google Scholar 

  101. Trasande L, Zoeller RT, Hass U, Kortenkamp A, Grandjean P, Myers JP et al (2016) Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis. Andrology 4(4):565–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yilmaz B, Terekeci H, Sandal S, Kelestimur F (2020) Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 21(1):127–147

    Article  CAS  PubMed  Google Scholar 

  103. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS et al (2015) EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36(6):1–150

    Article  Google Scholar 

Download references

Funding

The research was not supported by any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the study conception and design. All authors approved the final version for submission for publication. All authors agree to be accountable for the accuracy and integrity of the work.

Corresponding author

Correspondence to R. Modica.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial competing interests to disclose.

Ethical approval

The authors have no ethical conflict to disclose. The study was performed in accordance with the principles of the Declaration of Helsinki. Local Ethics Research Committee approval was obtained.

Informed consent

Written informed consent was obtained from the patients for publication of this case series.

Research involving human participants and animals

No animals were used for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modica, R., Benevento, E. & Colao, A. Endocrine-disrupting chemicals (EDCs) and cancer: new perspectives on an old relationship. J Endocrinol Invest 46, 667–677 (2023). https://doi.org/10.1007/s40618-022-01983-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-022-01983-4

Keywords

Navigation