Skip to main content

Advertisement

Log in

Microarray profiling identifies hsa_circ_0082003 as a novel tumor promoter for papillary thyroid carcinoma

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Circular RNAs (circRNAs) are non-coding RNAs that have essential regulatory roles in the development of various tumors. This study explored whether circRNAs are involved in the progression of papillary thyroid carcinoma (PTC).

Methods

Differentially expressed circRNAs (DECs) in four pairs of PTC and matched normal thyroid tissues were screened using a circRNA microarray. The potential functions of dysregulated circRNAs were predicted by bioinformatic analyses. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to determine hsa_circ_0082003 expression in 80 pairs of PTC and matched normal thyroid tissues. Cell counting kit-8, colony formation, wound healing, and Transwell assays were performed to evaluate the biological functions of hsa_circ_0082003 in PTC cells. The role of hsa_circ_0082003 in PTC tumorigenesis in vivo was validated in nude mice.

Results

In total, 3150 DECs (2317 upregulated and 833 downregulated) were identified. Pathway enrichment analyses indicated that the dysregulated circRNAs may play roles in PTC development. RT-qPCR validation demonstrated that hsa_circ_0082003 expression was significantly increased in PTC tissues and correlated with poor clinicopathological parameters. Receiver operating characteristic curve analysis showed that hsa_circ_0082003 had good performance for diagnosing PTC and judging whether it was accompanied by lymph node metastasis. Knockdown of hsa_circ_0082003 inhibited PTC cell proliferation, migration, and invasion. Tumor formation assays in vivo showed that downregulation of hsa_circ_0082003 significantly suppressed the growth of PTC.

Conclusion

Hsa_circ_0082003 may serve as a novel diagnostic biomarker and potential therapeutic target for PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Abbreviations

AUC:

Area under the receiver operating characteristic curve

BP:

Biological process

CC:

Cellular component

CI:

Confidence interval

circRNA:

Circular RNA

DEC:

Differentially expressed circRNA

ECM:

Extracellular matrix

ETE:

Extra-thyroidal extension

FBS:

Fetal bovine serum

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

LNM:

Lymph node metastasis

MF:

Molecular function

miRNA:

MicroRNA

NC:

Negative control

NS:

Not statistically significant

PBS:

Phosphate buffered saline

PTC:

Papillary thyroid carcinoma

pTNM:

Pathological tumor, node, and metastasis

ROC:

Receiver operating characteristic

RPMI:

Roswell park memorial institute

RT-qPCR:

Reverse transcription quantitative polymerase chain reaction

shRNA:

Short hairpin RNA

siRNA:

Small interfering RNA

TC:

Thyroid carcinoma

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  2. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133. https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rui ZY, Liu Y, Zheng W, Wang X, Meng ZW, Tan J, Li N, Jia Q (2021) A retrospective study of the risk factors and the prognosis in patients with papillary thyroid carcinoma depending on the number of lymph node metastasis. Clin Exp Med 21:277–286. https://doi.org/10.1007/s10238-020-00675-8

    Article  PubMed  Google Scholar 

  4. Guang Y, He W, Zhang W, Zhang H, Zhang Y, Wan F (2021) Clinical study of ultrasonographic risk factors for central lymph node metastasis of papillary thyroid carcinoma. Front Endocrinol (Lausanne) 12:791970. https://doi.org/10.3389/fendo.2021.791970

    Article  PubMed  Google Scholar 

  5. Zhao H, Li H (2019) Meta-analysis of ultrasound for cervical lymph nodes in papillary thyroid cancer: diagnosis of central and lateral compartment nodal metastases. Eur J Radiol 112:14–21. https://doi.org/10.1016/j.ejrad.2019.01.006

    Article  PubMed  Google Scholar 

  6. Hsu MT, Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280:339–340. https://doi.org/10.1038/280339a0

    Article  CAS  PubMed  Google Scholar 

  7. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  8. Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH (2020) Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer 19:172. https://doi.org/10.1186/s12943-020-01286-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li J, Sun D, Pu W, Wang J, Peng Y (2020) Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer 6:319–336. https://doi.org/10.1016/j.trecan.2020.01.012

    Article  CAS  PubMed  Google Scholar 

  10. Qiu L, Xu H, Ji M, Shang D, Lu Z, Wu Y, Tu Z, Liu H (2019) Circular RNAs in hepatocellular carcinoma: Biomarkers, functions and mechanisms. Life Sci 231:116660. https://doi.org/10.1016/j.lfs.2019.116660

    Article  CAS  PubMed  Google Scholar 

  11. Nie H, Wang Y, Liao Z, Zhou J, Ou C (2020) The function and mechanism of circular RNAs in gastrointestinal tumours. Cell Prolif 53:e12815. https://doi.org/10.1111/cpr.12815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pei X, Chen SW, Long X, Zhu SQ, Qiu BQ, Lin K, Lu F, Xu JJ, Zhang PF, Wu YB (2020) circMET promotes NSCLC cell proliferation, metastasis, and immune evasion by regulating the miR-145–5p/CXCL3 axis. Aging (Albany, NY) 12:13038–13058. https://doi.org/10.18632/aging.103392

    Article  CAS  PubMed  Google Scholar 

  13. Gene Ontology Consortium (2021) The gene ontology resource: enriching a gold mine. Nucleic Acids Res 49:D325–D334. https://doi.org/10.1093/nar/gkaa1113

    Article  CAS  Google Scholar 

  14. Geistlinger L, Csaba G, Santarelli M, Ramos M, Schiffer L, Turaga N, Law C, Davis S, Carey V, Morgan M, Zimmer R, Waldron L (2021) Toward a gold standard for benchmarking gene set enrichment analysis. Brief Bioinform 22:545–556. https://doi.org/10.1093/bib/bbz158

    Article  CAS  PubMed  Google Scholar 

  15. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73:3852–3856. https://doi.org/10.1073/pnas.73.11.3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patop IL, Wüst S, Kadener S (2019) Past, present, and future of circRNAs. EMBO J 38:e100836. https://doi.org/10.15252/embj.2018100836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lei B, Tian Z, Fan W, Ni B (2019) Circular RNA: a novel biomarker and therapeutic target for human cancers. Int J Med Sci 16:292–301. https://doi.org/10.7150/ijms.28047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y, Wong G (2021) The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 22:1706–1728. https://doi.org/10.1093/bib/bbaa001

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, Zhang S, Wang H, Qin W, Lu ZJ, Guo Y, Zhu Q, Wang D (2019) Microarray is an efficient tool for circRNA profiling. Brief Bioinform 20:1420–1433. https://doi.org/10.1093/bib/bby006

    Article  CAS  PubMed  Google Scholar 

  20. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu Y, Dhanasekaran SM, Engelke CG, Cao X, Robinson DR, Nesvizhskii AI, Chinnaiyan AM (2019) The landscape of circular RNA in cancer. Cell 176:869-881.e13. https://doi.org/10.1016/j.cell.2018.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lei M, Zheng G, Ning Q, Zheng J, Dong D (2020) Translation and functional roles of circular RNAs in human cancer. Mol Cancer 19:30. https://doi.org/10.1186/s12943-020-1135-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu W, Zhao J, Jin M, Zhou M (2019) circRAPGEF5 contributes to papillary thyroid proliferation and metastatis by regulation miR-198/FGFR1. Mol Ther Nucleic Acids 14:609–616. https://doi.org/10.1016/j.omtn.2019.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pan Y, Xu T, Liu Y, Li W, Zhang W (2019) Upregulated circular RNA circ_0025033 promotes papillary thyroid cancer cell proliferation and invasion via sponging miR-1231 and miR-1304. Biochem Biophys Res Commun 510:334–338. https://doi.org/10.1016/j.bbrc.2019.01.108

    Article  CAS  PubMed  Google Scholar 

  24. Zang J, Lu D, Xu A (2020) The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res 98:87–97. https://doi.org/10.1002/jnr.24356

    Article  CAS  PubMed  Google Scholar 

  25. Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21:475–490. https://doi.org/10.1038/s41580-020-0243-y

    Article  CAS  PubMed  Google Scholar 

  26. Xu X, Zhang J, Tian Y, Gao Y, Dong X, Chen W, Yuan X, Yin W, Xu J, Chen K, He C, Wei L (2020) CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer 19:128. https://doi.org/10.1186/s12943-020-01246-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tellman TV, Cruz LA, Grindel BJ, Farach-Carson MC (2021) Cleavage of the perlecan-semaphorin 3A-plexin A1-Neuropilin-1 (PSPN) complex by matrix metalloproteinase 7/matrilysin triggers prostate cancer cell dyscohesion and migration. Int J Mol Sci 22:3218. https://doi.org/10.3390/ijms22063218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367:eaau6977. https://doi.org/10.1126/science.aau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17:395–417. https://doi.org/10.1038/s41571-020-0341-y

    Article  PubMed  PubMed Central  Google Scholar 

  30. Du WW, Yang W, Li X, Fang L, Wu N, Li F, Chen Y, He Q, Liu E, Yang Z, Awan FM, Liu M, Yang BB (2020) The circular RNA circSKA3 binds integrin beta1 to induce invadopodium formation enhancing breast cancer invasion. Mol Ther 28:1287–1298. https://doi.org/10.1016/j.ymthe.2020.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tewari D, Priya A, Bishayee A, Bishayee A (2022) Targeting transforming growth factor-beta signalling for cancer prevention and intervention: recent advances in developing small molecules of natural origin. Clin Transl Med 12:e795. https://doi.org/10.1002/ctm2.795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nersisyan S, Novosad V, Engibaryan N, Ushkaryov Y, Nikulin S, Tonevitsky A (2021) ECM-receptor regulatory network and its prognostic role in colorectal cancer. Front Genet 12:782699. https://doi.org/10.3389/fgene.2021.782699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu S, Chen M, Huang J, Zhang F, Lv Z, Jia Y, Cui YZ, Sun LZ, Wang Y, Tang Y, Verhoeft KR, Li Y, Qin Y, Lin X, Guan XY, Lam KO (2021) ORAI2 promotes gastric cancer tumorigenicity and metastasis through PI3K/Akt signaling and MAPK-dependent focal adhesion disassembly. Cancer Res 81:986–1000. https://doi.org/10.1158/0008-5472.CAN-20-0049

    Article  CAS  PubMed  Google Scholar 

  34. Theocharis AD, Karamanos NK (2019) Proteoglycans remodeling in cancer: underlying molecular mechanisms. Matrix Biol 75–76:220–259. https://doi.org/10.1016/j.matbio.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  35. Manzella L, Stella S, Pennisi MS, Tirrò E, Massimino M, Romano C, Puma A, Tavarelli M, Vigneri P (2017) New insights in thyroid cancer and p53 family proteins. Int J Mol Sci 18:1325. https://doi.org/10.3390/ijms18061325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goncalves MD, Hopkins BD, Cantley LC (2018) Phosphatidylinositol 3-kinase, growth disorders, and cancer. N Engl J Med 379:2052–2062. https://doi.org/10.1056/NEJMra1704560

    Article  CAS  PubMed  Google Scholar 

  37. Recondo G, Che J, Jänne PA, Awad MM (2020) Targeting MET dysregulation in cancer. Cancer Discov 10:922–934. https://doi.org/10.1158/2159-8290.CD-19-1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu H, Deng H, Zhao Y, Li C, Liang Y (2018) LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res 37:279. https://doi.org/10.1186/s13046-018-0950-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo R, Luo J, Chang J, Rekhtman N, Arcila M, Drilon A (2020) MET-dependent solid tumours – molecular diagnosis and targeted therapy. Nat Rev Clin Oncol 17:569–587. https://doi.org/10.1038/s41571-020-0377-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang XY, Zhang PF, Wei CY, Peng R, Lu JC, Gao C, Cai JB, Yang X, Fan J, Ke AW, Zhou J, Shi GM (2020) Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol Cancer 19:92. https://doi.org/10.1186/s12943-020-01213-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design: YJ and JY; Experimentation: JY, JWF, WXW, and GFQ; Data analysis and manuscript writing: JY and JWF; Contribution of reagents/materials/analysis tools: JH, LZH, FW, and SYL; All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Y. Jiang.

Ethics declarations

Conflict of interest

This manuscript has not been published nor submitted for publication elsewhere. All authors have contributed significantly, and agree with the content of the manuscript. The authors report no proprietary or commercial interest in any product mentioned or concept discussed in this article.

Ethical approval

This study was approved by the Ethical Committee of Changzhou First People’s Hospital and was performed according to the ethical standards laid down in the 1964 Declaration of Helsinki.

Informed consent

Informed consent was obtained from all study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40618_2022_1922_MOESM1_ESM.xls

Table S1 Detailed information on the 10 most significantly upregulated circRNAs in PTC tissues as compared with matched normal thyroid tissues (XLS 24 KB)

40618_2022_1922_MOESM2_ESM.tif

Fig. S1 hsa_circ_0082003 has no significant effect on the proliferation, migration, and invasion of the human normal thyroid cell line in vitro. A RT-qPCR analysis of the transfection efficiency in the Nthy-ori 3–1 cell line. Relative expression levels were normalized to GAPDH expression. B CCK-8 assay of Nthy-ori 3–1 cells transfected with sh-hsa_circ_0082003 or sh-NC at the indicated time points. Wound healing assay (C) and Transwell invasion assay (D) of Nthy-ori 3–1 cells transfected with sh-hsa_circ_0082003 or sh-NC, respectively. NS, not statistically significant. ***P < 0.001 (TIF 9138 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Feng, JW., Wu, WX. et al. Microarray profiling identifies hsa_circ_0082003 as a novel tumor promoter for papillary thyroid carcinoma. J Endocrinol Invest 46, 509–522 (2023). https://doi.org/10.1007/s40618-022-01922-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-022-01922-3

Keywords

Navigation