Skip to main content

Advertisement

Log in

A study on serum pro-neurotensin (PNT), furin, and zinc alpha-2-glycoprotein (ZAG) levels in patients with acromegaly

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Acromegaly caused by growth hormone cell adenoma is commonly associated with abnormal glucolipid metabolism, which may result from changes in adipocytokine secretion. This study aims to investigate serum adipokine levels, including pro-neurotensin (PNT), furin, and zinc alpha-2-glycoprotein (ZAG), in acromegalic patients and the correlation between the levels of these three adipokines and GH levels and glucolipid metabolism indices.

Methods

Sixty-eight acromegalic patients and 121 controls were included, and their clinical data were recorded from electronic medical record system. Serum PNT, furin and ZAG levels were measured by ELISA.

Results

Serum PNT levels in acromegalic patients were significantly higher than controls (66.60 ± 12.36 vs. 46.68 ± 20.54 pg/ml, P < 0.001), and acromegaly was an independent influencing factor of PNT levels (P < 0.001). Moreover, subjects with the highest tertile of PNT levels had a close correlation with acromegaly (OR = 22.200, 95% CI 7.156 ~ 68.875, P < 0.001), even in Model 1 adjusted for gender and age and Model 2 adjusted for gender, age and BMI. Additionally, serum PNT levels were positively correlated with BMI (r = 0.220, P = 0.002) and triglycerides (TGs, r = 0.295, P < 0.001), and TGs were an independent influencing factor of serum PNT levels in acromegalic subjects (P < 0.001). Furthermore, serum PNT levels in obese acromegalic patients were significantly higher than those with normal BMI (P < 0.05). However, serum furin levels were lower in acromegalic patients than controls (0.184 ± 0.036 vs. 0.204 ± 0.061 ng/ml, P < 0.001).

Conclusion

This study is the first to demonstrate that acromegalic patients have increased serum PNT levels. Moreover, serum PNT plays a potential role in abnormal lipid metabolism of acromegalic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Vilar L, Vilar CF, Lyra R, Lyra R, Naves LA (2017) Acromegaly: clinical features at diagnosis. Pituitary 20(1):22–32. https://doi.org/10.1007/s11102-016-0772-8

    Article  PubMed  Google Scholar 

  2. Olarescu NC, Bollerslev J (2016) The impact of adipose tissue on insulin resistance in acromegaly. Trends Endocrinol Metab 27(4):226–237. https://doi.org/10.1016/j.tem.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  3. Berryman DE, List EO (2017) Growth hormone’s effect on adipose tissue: quality versus quantity. Int J Mol Sci 18(8):1621. https://doi.org/10.3390/ijms18081621

    Article  CAS  PubMed Central  Google Scholar 

  4. Mercado M, Ramírez-Rentería C (2018) Metabolic complications of acromegaly. Front Hormon Res 49:20–28. https://doi.org/10.1159/000486001

    Article  CAS  Google Scholar 

  5. Cozzo AJ, Fuller AM, Makowski L (2017) Contribution of adipose tissue to development of cancer. Compr Physiol 8(1):237–282. https://doi.org/10.1002/cphy.c170008

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M, Mrugacz M (2020) Adipokines and obesity. Potential link to metabolic disorders and chronic complications. Int J Mol Sci 21(10):3570. https://doi.org/10.3390/ijms21103570

    Article  CAS  PubMed Central  Google Scholar 

  7. Schroeder LE, Leinninger GM (1864) (2018) Role of central neurotensin in regulating feeding: implications for the development and treatment of body weight disorders Biochimica et biophysica acta. Mol Basis Dis 3:900–916. https://doi.org/10.1016/j.bbadis.2017.12.036

    Article  CAS  Google Scholar 

  8. Brown DR, Miller RJ (1982) Neurotensin. Br Med Bull 38(3):239–245. https://doi.org/10.1093/oxfordjournals.bmb.a071767

    Article  CAS  PubMed  Google Scholar 

  9. Rostène WH, Alexander MJ (1997) Neurotensin and neuroendocrine regulation. Front Neuroendocrinol 18(2):115–173. https://doi.org/10.1006/frne.1996.0146

    Article  PubMed  Google Scholar 

  10. Fawad A, Bergmann A, Struck J, Nilsson PM, Orho-Melander M, Melander O (2018) Proneurotensin predicts cardiovascular disease in an elderly population. J Clin Endocrinol Metab 103(5):1940–1947. https://doi.org/10.1210/jc.2017-02424

    Article  PubMed  Google Scholar 

  11. Li J, Song J, Zaytseva YY, Liu Y, Rychahou P, Jiang K, Starr ME, Kim JT, Harris JW, Yiannikouris FB, Katz WS, Nilsson PM, Orho-Melander M, Chen J, Zhu H, Fahrenholz T, Higashi RM, Gao T, Morris AJ, Cassis LA, Evers BM (2016) An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 533(7603):411–415. https://doi.org/10.1038/nature17662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nicoli CD, Wettersten N, Judd SE, Howard G, Howard VJ, Struck J, Cushman M (2020) Pro-neurotensin/neuromedin N and risk of ischemic stroke: The REasons for GEOGRAPHIC And Racial Differences in Stroke (REGARDS) study. Vasc Med (London, England) 25(6):534–540. https://doi.org/10.1177/1358863X20957406

    Article  CAS  Google Scholar 

  13. Cimini FA, Barchetta I, Bertoccini L, Ceccarelli V, Baroni MG, Melander O, Cavallo MG (2022) High pro-neurotensin levels in individuals with type 1 diabetes associate with the development of cardiovascular risk factors at follow-up. Acta Diabetol 59(1):49–56. https://doi.org/10.1007/s00592-021-01783-x

    Article  CAS  PubMed  Google Scholar 

  14. Villar B, Bertran L, Aguilar C, Binetti J, Martínez S, Sabench F, Real M, Riesco D, París M, Del Castillo D, Richart C, Auguet T (2021) Circulating levels of pro-neurotensin and its relationship with nonalcoholic steatohepatitis and hepatic lipid metabolism. Metabolites 11(6):373. https://doi.org/10.3390/metabo11060373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Melander O, Maisel AS, Almgren P, Manjer J, Belting M, Hedblad B, Engström G, Kilger U, Nilsson P, Bergmann A, Orho-Melander M (2012) Plasma proneurotensin and incidence of diabetes, cardiovascular disease, breast cancer, and mortality. JAMA 308(14):1469–1475. https://doi.org/10.1001/jama.2012.12998

    Article  CAS  PubMed  Google Scholar 

  16. Scamuffa N, Calvo F, Chrétien M, Seidah NG, Khatib AM (2006) Proprotein convertases: lessons from knockouts. FASEB J 20(12):1954–1963. https://doi.org/10.1096/fj.05-5491rev

    Article  CAS  PubMed  Google Scholar 

  17. Seidah NG, Mayer G, Zaid A, Rousselet E, Nassoury N, Poirier S, Essalmani R, Prat A (2008) The activation and physiological functions of the proprotein convertases. Int J Biochem Cell Biol 40(6–7):1111–1125. https://doi.org/10.1016/j.biocel.2008.01.030

    Article  CAS  PubMed  Google Scholar 

  18. Uhlén M, Björling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Pontén F (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4(12):1920–1932. https://doi.org/10.1074/mcp.M500279-MCP200

    Article  CAS  PubMed  Google Scholar 

  19. Bravo DA, Gleason JB, Sanchez RI, Roth RA, Fuller RS (1994) Accurate and efficient cleavage of the human insulin proreceptor by the human proprotein-processing protease furin. Characterization and kinetic parameters using the purified, secreted soluble protease expressed by a recombinant baculovirus. J Biol Chem 269(41):25830–25837

    Article  CAS  Google Scholar 

  20. Yoshimasa Y, Seino S, Whittaker J, Kakehi T, Kosaki A, Kuzuya H, Imura H, Bell GI, Steiner DF (1988) Insulin-resistant diabetes due to a point mutation that prevents insulin proreceptor processing. Science(New York, N Y) 240(4853):784–787. https://doi.org/10.1126/science.3283938

    Article  CAS  Google Scholar 

  21. Fernandez C, Rysä J, Almgren P, Nilsson J, Engström G, Orho-Melander M, Ruskoaho H, Melander O (2018) Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med 284(4):377–387. https://doi.org/10.1111/joim.12783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu ZW, Ma Q, Liu J, Li JW, Chen YD (2021) The association between plasma furin and cardiovascular events after acute myocardial infarction. BMC Cardiovasc Disord 21(1):468. https://doi.org/10.1186/s12872-021-02029-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S, Tisdale MJ, Trayhurn P (2004) Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci USA 101(8):2500–2505. https://doi.org/10.1073/pnas.0308647100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pearsey HM, Henson J, Sargeant JA, Davies MJ, Khunti K, Suzuki T, Bowden-Davies KA, Cuthbertson DJ, Yates TE (2020) Zinc-alpha2-glycoprotein, dysglycaemia and insulin resistance: a systematic review and meta-analysis. Rev Endocr Metabol Disord 21(4):569–575. https://doi.org/10.1007/s11154-020-09553-w

    Article  CAS  Google Scholar 

  25. Severo JS, Morais J, Beserra JB, Dos Santos LR, de Sousa Melo SR, de Sousa GS, de Matos Neto EM, Henriquesdo Nascimento Marreiro, D GS (2020) Role of zinc in zinc-α2-glycoprotein metabolism in obesity: a review of literature. Biol Trace Elem Res 193(1):81–88. https://doi.org/10.1007/s12011-019-01702-w

    Article  CAS  PubMed  Google Scholar 

  26. Kawamata T, Inui A, Hosoda H, Kangawa K, Hori T (2007) Perioperative plasma active and total ghrelin levels are reduced in acromegaly when compared with in nonfunctioning pituitary tumours even after normalization of serum GH. Clini Endocrinol 67(1):140–144. https://doi.org/10.1111/j.1365-2265.2007.02851.x

    Article  CAS  Google Scholar 

  27. Sucunza N, Barahona MJ, Resmini E, Fernández-Real JM, Ricart W, Farrerons J, Rodríguez Espinosa J, Marin AM, Puig T, Webb SM (2009) A link between bone mineral density and serum adiponectin and visfatin levels in acromegaly. J Clin Endocrinol Metab 94(10):3889–3896. https://doi.org/10.1210/jc.2009-0474

    Article  CAS  PubMed  Google Scholar 

  28. Ke X, Duan L, Gong F, Zhang Y, Deng K, Yao Y, Wang L, Pan H, Zhu H (2020) Serum levels of asprosin, a novel adipokine, are significantly lowered in patients with acromegaly. Int J Endocrinol 2020:8855996. https://doi.org/10.1155/2020/8855996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Banskota S, Adamson DC (2021) Pituitary adenomas: from diagnosis to therapeutics. Biomedicines 9(5):494. https://doi.org/10.3390/biomedicines9050494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu H, Xu Y, Gong F, Shan G, Yang H, Xu K, Zhang D, Cheng X, Zhang Z, Chen S, Wang L, Pan H (2017) Reference ranges for serum insulin-like growth factor I (IGF-I) in healthy Chinese adults. PLoS ONE 12(10):e0185561. https://doi.org/10.1371/journal.pone.0185561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giorgi RR, Chile T, Bello AR, Reyes R, Fortes MA, Machado MC, Cescato VA, Musolino NR, Bronstein MD, Giannella-Neto D, Corrêa-Giannella ML (2008) Expression of neurotensin and its receptors in pituitary adenomas. J Neuroendocrinol 20(9):1052–1057. https://doi.org/10.1111/j.1365-2826.2008.01761.x

    Article  CAS  PubMed  Google Scholar 

  32. Schimpff RM, Bozzola M, Lhiaubet AM, Spadaro B, Tettoni K, Rostène W (1994) Effects of growth hormone administration on neurotensin release in children with growth delay. Horm Res 42(3):95–99. https://doi.org/10.1159/000184155

    Article  CAS  PubMed  Google Scholar 

  33. Vijayan E, McCann SM (1980) Effects of substance P and neurotensin on growth hormone and thyrotropin release in vivo and in vitro. Life Sci 26(4):321–327. https://doi.org/10.1016/0024-3205(80)90344-6

    Article  CAS  PubMed  Google Scholar 

  34. Li L, Weiss HL, Li J, Chen Z, Donato L, Evers BM (2020) High plasma levels of pro-NT are associated with increased colon cancer risk. Endocr-Related Cancer 27(11):641–646. https://doi.org/10.1530/ERC-20-0310

    Article  CAS  Google Scholar 

  35. Barchetta I, Cimini FA, Capoccia D, Bertoccini L, Ceccarelli V, Chiappetta C, Leonetti F, Di Cristofano C, Silecchia G, Orho-Melander M, Melander O, Cavallo MG (2018) Neurotensin is a lipid-induced gastrointestinal peptide associated with visceral adipose tissue inflammation in obesity. Nutrients 10(4):526. https://doi.org/10.3390/nu10040526

    Article  CAS  PubMed Central  Google Scholar 

  36. Barchetta I, Cimini FA, Leonetti F, Capoccia D, Di Cristofano C, Silecchia G, Orho-Melander M, Melander O, Cavallo MG (2018) Increased plasma proneurotensin levels identify NAFLD in adults with and without type 2 diabetes. J Clin Endocrinol Metab 103(6):2253–2260. https://doi.org/10.1210/jc.2017-02751

    Article  PubMed  Google Scholar 

  37. Wei Z, Lei X, Seldin MM, Wong GW (2012) Endopeptidase cleavage generates a functionally distinct isoform of C1q/tumor necrosis factor-related protein-12 (CTRP12) with an altered oligomeric state and signaling specificity. J Biol Chem 287(43):35804–35814. https://doi.org/10.1074/jbc.M112.365965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo X, Gao L, Shi X, Li H, Wang Q, Wang Z, Chen W, Xing B (2018) Pre- and postoperative body composition and metabolic characteristics in patients with acromegaly: a prospective study. Int J Endocrinol 2018:4125013. https://doi.org/10.1155/2018/4125013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F, Saha PK, Del Solar M, Zhu B, York B, Sarkar P, Rendon DA, Gaber MW, LeMaire SA, Coselli JS, Milewicz DM, Sutton VR, Butte NF, Moore DD, Chopra AR (2016) Asprosin, a fasting-induced glucogenic protein hormone. Cell 165(3):566–579. https://doi.org/10.1016/j.cell.2016.02.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tada T, Ohkubo I, Niwa M, Sasaki M, Tateyama H, Eimoto T (1991) Immunohistochemical localization of Zn-alpha 2-glycoprotein in normal human tissues. J of Histochem Cytochem 39(9):1221–1226. https://doi.org/10.1177/39.9.1918940

    Article  CAS  Google Scholar 

  41. Rolli V, Radosavljevic M, Astier V, Macquin C, Castan-Laurell I, Visentin V, Guigné C, Carpéné C, Valet P, Gilfillan S, Bahram S (2007) Lipolysis is altered in MHC class I zinc-alpha(2)-glycoprotein deficient mice. FEBS Lett 581(3):394–400. https://doi.org/10.1016/j.febslet.2006.12.047

    Article  CAS  PubMed  Google Scholar 

  42. Wei X, Liu X, Tan C, Mo L, Wang H, Peng X, Deng F, Chen L (2019) Expression and function of zinc-α2-glycoprotein. Neurosci Bull 35(3):540–550. https://doi.org/10.1007/s12264-018-00332-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Balaz M, Ukropcova B, Kurdiova T, Gajdosechova L, Vlcek M, Janakova Z, Fedeles J, Pura M, Gasperikova D, Smith SR, Tkacova R, Klimes I, Payer J, Wolfrum C, Ukropec J (2015) Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity. Obesity (Silver Spring, Md) 23(2):322–328. https://doi.org/10.1002/oby.20856

    Article  CAS  Google Scholar 

  44. Rydén M, Agustsson T, Andersson J, Bolinder J, Toft E, Arner P (2012) Adipose zinc-α2-glycoprotein is a catabolic marker in cancer and noncancerous states. J Intern Med 271(4):414–420. https://doi.org/10.1111/j.1365-2796.2011.02441.x

    Article  CAS  PubMed  Google Scholar 

  45. Fain JN, Tagele BM, Cheema P, Madan AK, Tichansky DS (2010) Release of 12 adipokines by adipose tissue, nonfat cells, and fat cells from obese women. Obesity (Silver Spring, Md) 18(5):890–896. https://doi.org/10.1038/oby.2009.335

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences for their hard work in sample storage.

Funding

This work was supported by a grant from the CAMS Innovation Fund for Medical Sciences (CIFMS, 2021-I2M-1–003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The study was approved by the Ethics Committee of the Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (ethics code: JS-1663). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Research involving human participants and/or animals

The study was approved by our local ethical committee and informed consent was obtained.

Informed consent

All subjects provided with fully informed consent before the study and consent was obtained form all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, X., Duan, L., Gong, F. et al. A study on serum pro-neurotensin (PNT), furin, and zinc alpha-2-glycoprotein (ZAG) levels in patients with acromegaly. J Endocrinol Invest 45, 1945–1954 (2022). https://doi.org/10.1007/s40618-022-01827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-022-01827-1

Keywords

Navigation