Skip to main content

Advertisement

Log in

Transcriptome-guided resolution of tumor microenvironment interactions in pheochromocytoma and paraganglioma subtypes

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Pheochromocytomas and paragangliomas (PCPG) are rare catecholamine-secreting endocrine tumors deriving from chromaffin cells of the embryonic neural crest. Although distinct molecular PCPG subtypes have been elucidated, certain characteristics of these tumors have yet to be fully examined, namely the tumor microenvironment (TME). To further understand tumor–stromal interactions in PCPG subtypes, the present study deconvoluted bulk tumor gene expression to examine ligand–receptor interactions.

Methods

RNA-sequencing data primary solid PCPG tumors were derived from The Cancer Genome Atlas (TCGA). Tumor purity was estimated using two robust algorithms. The tumor purity estimates and bulk tumor expression values allowed for non-negative linear regression to predict the average expression of each gene in the stromal and tumor compartments for each PCPG molecular subtype. The predicted expression values were then used in conjunction with a previously curated ligand–receptor database and scoring system to evaluate top ligand–receptor interactions.

Results

Across all PCPG subtypes compared to normal samples, tumor-to-tumor signaling between bone morphogenic proteins 7 (BMP7) and 15 (BMP15) and cognate receptors ACVR2B and BMPR1B was increased. In addition, tumor-to-stroma signaling was enriched for interactions between predicted tumor-originating delta-like ligand 3 (DLL3) and predicted stromal NOTCH receptors. Stroma-to-tumor signaling was enriched for interactions between ephrins A1 and A4 with ephrin receptors EphA5, EphA7, and EphA8. Pseudohypoxia subtype tumors displayed increased predicted stromal expression of genes related to immune-exhausted T-cell response, including those for inhibitory receptors HAVCR2 and CTLA4.

Conclusion

The current exploratory study predicted stromal and tumor through compartmental deconvolution and yielded previously unrecognized interactions and putative biomarkers in PCPG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data used in the present study are publicly available at the referenced data repositories.

Code availability

All analyses were performed with R and Python programming language. Code is available upon request.

References

  1. Lefebvre M, Foulkes WD (2014) Pheochromocytoma and paraganglioma syndromes: genetics and management update. Curr Oncol 21:e8–e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pacak K, Eisenhofer G, Ahlman H et al (2007) Pheochromocytoma: recommendations for clinical practice from the First International Symposium. Nat Clin Pract Endocrinol Metab 3:92–102

    Article  PubMed  Google Scholar 

  3. Lenders JW, Duh QY, Eisenhofer G et al (2014) Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99:1915–1942. https://doi.org/10.1210/jc.2014-1498

    Article  CAS  PubMed  Google Scholar 

  4. Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR et al (2017) Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 31(2):181–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giacci AJ (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35:856–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ilanchezhian M, Jha A, Pacak K, Del Rivero J (2020) Emerging treatments for advanced/metastatic pheochromocytoma and paraganglioma. Curr Treat Options Oncol 21(11):85. https://doi.org/10.1007/s11864-020-00787-z (PMID:32862332;PMCID:PMC7456409)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jin MZ, Jin WL (2020) The updated landscape of tumor microenvironment and drug repurposing. Sig Transduct Target Ther 5:166. https://doi.org/10.1038/s41392-020-00280-x

    Article  Google Scholar 

  8. Hendry S, Salgado R, Gevaert T et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immunooncology biomarkers working group: part 1: assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol 24:235–251

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bremnes RM, Al-Shibli K, Donnem T et al (2011) The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol 6:824–833

    Article  PubMed  Google Scholar 

  10. Batchu S (2020) Age-related differences of immune infiltrates in pheochromocytomas and paragangliomas. J Endocrinol Invest. https://doi.org/10.1007/s40618-020-01443-x

    Article  PubMed  Google Scholar 

  11. Thorsson V, Gibbs DL, Brown SD et al (2019) The immune landscape of cancer [published correction appears in immunity. 51(2):411-412]. Immunity 48(4):812–830

    Article  Google Scholar 

  12. Tamborero D, Rubio-Perez C, Muiños F et al (2018) A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin Cancer Res 24(15):3717–3728

    Article  CAS  PubMed  Google Scholar 

  13. Goh JJL, Chou N, Seow WY et al (2020) Highly specific multiplexed RNA imaging in tissues with split-FISH. Nat Methods 17:689–693. https://doi.org/10.1038/s41592-020-0858-0

    Article  CAS  PubMed  Google Scholar 

  14. Vickovic S, Eraslan G, Salmén F et al (2019) High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods 16:987–990. https://doi.org/10.1038/s41592-019-0548-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tirosh I et al (2016) Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539:309–313

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee HW et al (2020) Single-cell RNA sequencing reveals the TME and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient. Genome Med 12:47

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou Y, Yang D, Yang Q et al (2020) Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun 11:6322. https://doi.org/10.1038/s41467-020-20059-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghoshdastider U, Rohatgi N, Mojtabavi Naeini M, Baruah P, Revkov E, Guo YA, Rizzetto S, Wong AML, Solai S, Nguyen TT, Yeong JPS, Iqbal J, Tan PH, Chowbay B, Dasgupta R, Skanderup AJ (2021) Pan-cancer analysis of ligand-receptor crosstalk in the tumor microenvironment. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-20-2352 (Epub ahead of print. PMID: 33547160)

    Article  PubMed  Google Scholar 

  19. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612

    Article  PubMed  Google Scholar 

  20. Zhang N, Wu HJ, Zhang W, Wang J, Wu H, Zheng X (2015) Predicting tumor purity from methylation microarray data. Bioinformatics 31(21):3401–3405. https://doi.org/10.1093/bioinformatics/btv370 (Epub 2015 Jun 25 PMID: 26112293)

    Article  CAS  PubMed  Google Scholar 

  21. Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26:1572–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Hayes DN, Nobel A, Marron JS (2008) Statistical significance of clustering for high-dimension, low-sample size data. J Am Stat Assoc 103:1281–1293

    Article  CAS  Google Scholar 

  23. Ramilowski JA, Goldberg T, Harshbarger J, Kloppman E, Lizio M, Satagopam VP, Itoh M, Kawaji H, Carninci P, Rost B et al (2015) A draft network of ligand–receptor mediated multicellular signalling in human. Nat Commun 6:7866

    Article  CAS  PubMed  Google Scholar 

  24. Rozali EN, Hato SV, Robinson BW, Lake RA, Lesterhuis WJ (2012) Programmed death ligand 2 in cancer-induced immune suppression. Clin Dev Immunol 2012:656340. https://doi.org/10.1155/2012/656340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, Lunceford J, Cheng J, Chow LQM, Seiwert TY et al (2017) PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res 23:3158–3167. https://doi.org/10.1158/1078-0432.CCR-16-1761

    Article  CAS  PubMed  Google Scholar 

  26. Körner M, Waser B, Reubi JC (2004) High expression of neuropeptide y receptors in tumors of the human adrenal gland and extra-adrenal paraganglia. Clin Cancer Res 10(24):8426–8433. https://doi.org/10.1158/1078-0432.CCR-04-0821 (PMID: 15623622)

    Article  PubMed  Google Scholar 

  27. Ajona D, Zandueta C, Corrales L, Moreno H, Pajares MJ, Ortiz-Espinosa S, Martínez-Terroba E, Perurena N, de Miguel FJ, Jantus-Lewintre E, Camps C, Vicent S, Agorreta J, Montuenga LM, Pio R, Lecanda F (2018) Blockade of the complement C5a/C5aR1 axis impairs lung cancer bone metastasis by CXCL16-mediated effects. Am J Respir Crit Care Med 197(9):1164–1176. https://doi.org/10.1164/rccm.201703-0660OC (PMID:29327939;PMCID:PMC6835094)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rothhammer T, Poser I, Soncin F, Bataille F, Moser M, Bosserhoff AK (2005) Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration. Cancer Res 65:448–456

    CAS  PubMed  Google Scholar 

  29. Alarmo EL, Rauta J, Kauraniemi P, Karhu R, Kuukasjärvi T, Kallioniemi A (2006) Bone morphogenetic protein 7 is widely overexpressed in primary breast cancer. Genes Chromosom Cancer 45:411–419

    Article  CAS  PubMed  Google Scholar 

  30. Bobinac D, Marić I, Zoricić S, Spanjol J, Dordević G, Mustać E, Fuckar Z (2005) Expression of bone morphogenetic proteins in human metastatic prostate and breast cancer. Croat Med J 46:389–396

    PubMed  Google Scholar 

  31. Davies SR, Watkins G, Douglas-Jones A, Mansel RE, Jiang WG (2008) Bone morphogenetic proteins 1 to 7 in human breast cancer, expression pattern and clinical/prognostic relevance. J Exp Ther Oncol 7:327–338

    CAS  PubMed  Google Scholar 

  32. Liu Y, Chen J, Yang Y, Zhang L, Jiang WG (2012) Μolecular impact of bone morphogenetic protein 7, on lung cancer cells and its clinical significance. Int J Mol Med 29:1016–1024

    Article  CAS  PubMed  Google Scholar 

  33. Chae YK, Ranganath K, Hammerman PS, Vaklavas C, Mohindra N, Kalyan A, Matsangou M, Costa R, Carneiro B, Villaflor VM, Cristofanilli M, Giles FJ (2017) Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 8(9):16052–16074. https://doi.org/10.18632/oncotarget.14109 (PMID:28030802;PMCID:PMC5362545)

    Article  PubMed  Google Scholar 

  34. Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437:199–213. https://doi.org/10.1042/BJ20101603

    Article  CAS  PubMed  Google Scholar 

  35. Babina IS, Turner NC (2017) Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer 17:318–332. https://doi.org/10.1038/nrc.2017.8

    Article  CAS  PubMed  Google Scholar 

  36. Thanasupawat T, Glogowska A, Nivedita-Krishnan S, Wilson B, Klonisch T, Hombach-Klonisch S (2019) Emerging roles for the relaxin/RXFP1 system in cancer therapy. Mol Cell Endocrinol 1(487):85–93. https://doi.org/10.1016/j.mce.2019.02.001 (Epub 2019 Feb 11 PMID: 30763603)

    Article  CAS  Google Scholar 

  37. Spino M, Kurz SC, Chiriboga L, Serrano J, Zeck B, Sen N, Patel S, Shen G, Vasudevaraja V, Tsirigos A, Suryadevara CM, Frenster JD, Tateishi K, Wakimoto H, Jain R, Riina HA, Nicolaides TP, Sulman EP, Cahill DP, Golfinos JG, Isse K, Saunders LR, Zagzag D, Placantonakis DG, Snuderl M, Chi AS (2019) Cell surface notch ligand DLL3 is a therapeutic target in isocitrate dehydrogenase-mutant glioma. Clin Cancer Res 25(4):1261–1271. https://doi.org/10.1158/1078-0432.CCR-18-2312 (Epub 2018 Nov 5. PMID: 30397180; PMCID: PMC7365589)

    Article  CAS  PubMed  Google Scholar 

  38. Furuta M, Kikuchi H, Shoji T, Takashima Y, Kikuchi E, Kikuchi J, Kinoshita I, Dosaka-Akita H, Sakakibara-Konishi J (2019) DLL3 regulates the migration and invasion of small cell lung cancer by modulating Snail. Cancer Sci 110(5):1599–1608. https://doi.org/10.1111/cas.13997 (Epub 2019 Apr 13. PMID: 30874360; PMCID: PMC6501010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ladi E, Nichols JT, Ge W et al (2005) The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol 170:983–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL (2011) Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet 20(5):905–916. https://doi.org/10.1093/hmg/ddq529

    Article  CAS  PubMed  Google Scholar 

  41. Henke RM, Meredith DM, Borromeo MD, Savage TK, Johnson JE (2009) Ascl1 and Neurog2 form novel complexes and regulate Delta-like3 (Dll3) expression in the neural tube. Dev Biol 328:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T (2005) ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res 65:10680–10685

    Article  CAS  PubMed  Google Scholar 

  43. Frohling S, Dohner H (2008) Chromosomal abnormalities in cancer. N Engl J Med 359:722–734

    Article  CAS  PubMed  Google Scholar 

  44. Dohn M, Jiang JY, Chen XB (2001) Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 20:6503–6515

    Article  CAS  PubMed  Google Scholar 

  45. Xia G et al (2006) EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival. Oncogene 25:769–780

    Article  CAS  PubMed  Google Scholar 

  46. Guan M, Xu C, Zhang F, Ye C (2009) Aberrant methylation of EphA7 in human prostate cancer and its relation to clinicopathologic features. Int J Cancer 124:88–94

    Article  CAS  PubMed  Google Scholar 

  47. Wang J et al (2007) Differential expression of EphA7 receptor tyrosine kinase in gastric carcinoma. Hum Pathol 38:1649–1656

    Article  CAS  PubMed  Google Scholar 

  48. Dottori M, Down M, Huttmann A, Fitzpatrick DR, Boyd AW (1999) Cloning and characterization of EphA3 (Hek) gene promoter: DNA methylation regulates expression in hematopoietic tumor cells. Blood 94:2477–2486

    Article  CAS  PubMed  Google Scholar 

  49. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180. https://doi.org/10.1038/nrc2806 (PMID:20179713;PMCID:PMC2921274)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lai EW, Joshi BH, Martiniova L, Dogra R, Fujisawa T, Leland P, de Krijger RR, Lubensky IA, Elkahloun AG, Morris JC, Puri RK, Pacak K (2009) Overexpression of interleukin-13 receptor-a2 in neuroendocrine malignant pheochromocytoma: a novel target for receptor directed ant-cancer therapy. J Clin Endocrinol Metab 94(8):2952–2957. https://doi.org/10.1210/jc.2009-0309 (Epub 2009 Jun 2. PMID: 19491224; PMCID: PMC2730867)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kano Y, Otsuka F, Takeda M, Suzuki J, Inagaki K, Miyoshi T, Miyamoto M, Otani H, Ogura T, Makino H (2005) Regulatory roles of bone morphogenetic proteins and glucocorticoids in catecholamine production by rat pheochromocytoma cells. Endocrinology 146(12):5332–5340. https://doi.org/10.1210/en.2005-0474 (Epub 2005 Sep 8 PMID: 16150914)

    Article  CAS  PubMed  Google Scholar 

  52. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, Lynn RC, Philip M, Rao A, Restifo NP, Schietinger A, Schumacher TN, Schwartzberg PL, Sharpe AH, Speiser DE, Wherry EJ, Youngblood BA, Zehn D (2019) Defining “T cell exhaustion.” Nat Rev Immunol 19(11):665–674. https://doi.org/10.1038/s41577-019-0221-9 (Epub 2019 Sep 30. PMID: 31570879; PMCID: PMC7286441)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang Y, Li Y, Zhu B (2015) T-cell exhaustion in the tumor microenvironment. Cell Death Dis 6(6):e1792. https://doi.org/10.1038/cddis.2015.162 (PMID:26086965;PMCID:PMC4669840)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pinato DJ, Black JR, Trousil S, Dina RE, Trivedi P, Mauri FA, Sharma R (2017) Programmed cell death ligands expression in phaeochromocytomas and paragangliomas: Relationship with the hypoxic response, immune evasion and malignant behavior. Oncoimmunology 6(11):e1358332. https://doi.org/10.1080/2162402X.2017.1358332 (PMID:29147618;PMCID:PMC5674959)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable. No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

SB: conceptualization, methodology, software, visualization, investigation. JM: methodology. AH, OSH: writing reviewing and editing. UA, FRS, YKH: writing, reviewing, editing, investigation.

Corresponding author

Correspondence to S. Batchu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethics approval

Not applicable. This article does not contain any experiments with human participants performed by the authors.

Informed consent

For this type of study, no informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40618_2021_1729_MOESM1_ESM.png

Supplementary file1 (PNG 325 KB) Supplementary Figure 1. A Clustering reproduced TCGA subtypes which were used for downstream compartment-specific gene deconvolution. B Consensus CDF shows that the consensus cumulative distribution indicated that four clusters approached the maximum consensus.

40618_2021_1729_MOESM2_ESM.png

Supplementary file2 (PNG 66 KB) Supplementary Figure 2. A Correlation plot of the two purity predicting methods and consensus purity representing the average. B Distribution of predicted and consensus tumor purity estimates.

40618_2021_1729_MOESM3_ESM.png

Supplementary file3 (PNG 166 KB) Supplementary Figure 3. A As a positive control, previously validated stromal and immune cell–specific genes (Yoshihara et al. 2013) were predicted to have higher expression in the stroma of each subtype. B Protein expression was inferred for tumor and stroma compartments in using reverse phase protein array (RPPA) data and compared to deconvolved RNA-sequencing (RNA-seq) expression data. Strong concordance is visible between the predicted mRNA and protein expression profiles.

Supplementary file4 (XLSX 704 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batchu, S., Hakim, A., Henry, O.S. et al. Transcriptome-guided resolution of tumor microenvironment interactions in pheochromocytoma and paraganglioma subtypes. J Endocrinol Invest 45, 989–998 (2022). https://doi.org/10.1007/s40618-021-01729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-021-01729-8

Keywords

Navigation