Skip to main content
Log in

Maternal hyperandrogenism is associated with a higher risk of type 2 diabetes mellitus and overweight in adolescent and adult female offspring: a long-term population-based follow-up study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Adverse intrauterine environment may predispose offspring to cardio-metabolic dysfunction in later life. In this study, we aimed to investigate the effects of maternal hyperandrogenism (MH) on cardio-metabolic risk factors in female offspring in later life.

Methods

This prospective population-based study included 211 female offspring with MH and 757 female offspring without MH (controls). Both groups were followed from baseline to the date of incidence of events, censoring, or end of the study period, whichever came first. Age scaled unadjusted and adjusted cox regression models were applied to assess the hazard ratios (HR) and 95% confidence intervals (CIs) for the association of MH with pre-diabetes (pre-DM), type 2 diabetes mellitus (T2DM), overweight and obesity in offspring of both groups. Statistical analysis was performed using the software package STATA; significance level was set at P < 0.05.

Results

This study revealed a higher risk of T2DM (unadjusted HR 2.67, 95% CI 1.33–5.36) and overweight (unadjusted HR 1.41, 95% CI 1.06–1.88) in female offspring with MH, compared to controls. Results remained unchanged after adjustment for potential confounders including body mass index, education, physical activity, mother’s age at delivery, birth weight, and childhood obesity. However, no significant difference was observed in the risk of pre-DM and obesity in females with MH, compared to controls in both unadjusted and adjusted models.

Conclusion

This pioneer study with a long-term follow-up demonstrated that MH increases the risk of developing T2DM and being overweight in female offspring in later life. Further long-term population-based studies are needed to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reiter-Brennan C, Dzaye O, Davis D, Blaha M, Eckel RH (2021) Comprehensive care models for cardiometabolic disease. Curr Cardiol Rep 23:1–11. https://doi.org/10.1007/s11886-021-01450-1

    Article  Google Scholar 

  2. Sidney S, Quesenberry CP, Jaffe MG, Sorel M, Nguyen-Huynh MN, Kushi LH, Go AS, Rana JS (2016) Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol 1:594–599. https://doi.org/10.1001/jamacardio.2016.1326

    Article  PubMed  Google Scholar 

  3. Skogen JC, Overland S (2012) The fetal origins of adult disease: a narrative review of the epidemiological literature. JRSM Short Rep 3:1–7. https://doi.org/10.1258/shorts.2012.012048

    Article  Google Scholar 

  4. Barker DJP (2004) The developmental origins of adult disease. J Am Coll Nutr 23:588S-595S. https://doi.org/10.1080/07315724.2004.10719428

    Article  CAS  PubMed  Google Scholar 

  5. Sir-Petermann T, Maliqueo M, Codner E, Br E, Crisosto N, Perez V, Pérez-Bravo F, Cassorla F (2007) Early metabolic derangements in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab 92:4637–4642. https://doi.org/10.1210/jc.2007-1036

    Article  CAS  PubMed  Google Scholar 

  6. Puttabyatappa M, Sargis RM, Padmanabhan V (2020) Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 245:R23–R48. https://doi.org/10.1530/JOE-20-0044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hakim C, Padmanabhan V, Vyas AK (2017) Gestational hyperandrogenism in developmental programming. Endocrinology 158:199–212. https://doi.org/10.1210/en.2016-1801

    Article  CAS  PubMed  Google Scholar 

  8. Cardoso RC, Veiga-Lopez A, Moeller J, Beckett E, Pease A, Keller E, Madrigal V, Chazenbalk G, Dumesic D, Padmanabhan V (2016) Developmental programming: impact of gestational steroid and metabolic milieus on adiposity and insulin sensitivity in prenatal testosterone-treated female sheep. Endocrinology 157:522–535. https://doi.org/10.1210/en.2015-1565

    Article  CAS  PubMed  Google Scholar 

  9. Roland AV, Nunemaker CS, Keller SR, Moenter SM (2010) Prenatal androgen exposure programs metabolic dysfunction in female mice. J Endocrinol 207:213–223. https://doi.org/10.1677/JOE-10-0217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carrasco A, Recabarren MP, Rojas-Garcia PP, Gutierrez M, Morales K, Sir-Petermann T, Recabarren SE (2020) Prenatal testosterone exposure disrupts insulin secretion and promotes insulin resistance. Sci Rep 10:1–7. https://doi.org/10.1038/s41598-019-57197-x

    Article  CAS  Google Scholar 

  11. Sherman SB, Sarsour N, Salehi M, Schroering A, Mell B, Joe B, Hill JW (2018) Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes 9:400–421. https://doi.org/10.1080/19490976.2018.1441664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Daan NM, Koster MP, Steegers-Theunissen RP, Eijkemans MJ, Fauser B (2017) Endocrine and cardiometabolic cord blood characteristics of offspring born to mothers with and without polycystic ovary syndrome. Fertil Steril 107(261–268):e263. https://doi.org/10.1016/j.fertnstert.2016.09.042

    Article  CAS  Google Scholar 

  13. Mehrabian F, Kelishadi R (2012) Comparison of the metabolic parameters and androgen level of umbilical cord blood in newborns of mothers with polycystic ovary syndrome and controls. J Res Med Sci 17:207

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Barry JA, Kay A, Navaratnarajah R, Iqbal S, Bamfo J, David A, Hines M, Hardiman P (2010) Umbilical vein testosterone in female infants born to mothers with polycystic ovary syndrome is elevated to male levels. J Obstet Gynaecol 30:444–446. https://doi.org/10.3109/01443615.2010.485254

    Article  CAS  PubMed  Google Scholar 

  15. Maliqueo M, Lara HE, Sanchez F, Echiburu B, Crisosto N, Sir-Petermann T (2013) Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 166:151–155. https://doi.org/10.1016/j.ejogrb.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  16. Recabarren SE, Smith R, Rios R, Maliqueo M, Echiburu B, Codner E, Cassorla F, Rojas P, Sir-Petermann T (2008) Metabolic profile in sons of women with polycystic ovary syndrome. J Clin Endocrinol Metab 93:1820–1826. https://doi.org/10.1210/jc.2007-2256

    Article  CAS  PubMed  Google Scholar 

  17. BlO Y, Yarali H, Oguz H, Bayraktar M (2003) Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J Clin Endocrinol Metabol 88:2031–2036. https://doi.org/10.1210/jc.2002-021499

    Article  CAS  Google Scholar 

  18. Abbott DH, Zhou R, Bird IM, Dumesic DA, Conley AJ (2008) Fetal programming of adrenal androgen excess: lessons from a nonhuman primate model of polycystic ovary syndrome. Endocr Dev 13:145–158. https://doi.org/10.1159/000134831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gunning MN, Sir Petermann T, Crisosto N, Van Rijn BB, De Wilde MA, Christ JP, Uiterwaal C, De Jager W, Eijkemans MJ, Kunselman AR (2020) Cardiometabolic health in offspring of women with PCOS compared to healthy controls: a systematic review and individual participant data meta-analysis. Hum Reprod Update 26:104–118. https://doi.org/10.1093/humupd/dmz036

    Article  CAS  Google Scholar 

  20. Azizi F, Madjid M, Rahmani M, Emami H, Mirmiran P, Hadjipour R (2000) Tehran Lipid and Glucose Study (TLGS): rationale and design. IJEM 2:77–86

    Google Scholar 

  21. Tehrani FR, Behboudi-Gandevani S, Dovom MR, Farahmand M, Minooee S, Noroozzadeh M, Amiri M, Nazarpour S, Azizi F (2018) Reproductive assessment: findings from 20 years of the Tehran Lipid and Glucose Study. Int J Endocrinol Metab 16(4 Suppl):e84786. https://doi.org/10.5812/ijem.84786

    Article  Google Scholar 

  22. Behboudi-Gandevani S, Tehrani FR, Hosseinpanah F, Khalili D, Cheraghi L, Kazemijaliseh H, Azizi F (2018) Cardiometabolic risks in polycystic ovary syndrome: long-term population-based follow-up study. Fertil Steril 110:1377–1386. https://doi.org/10.1016/j.fertnstert.2018.08.046

    Article  PubMed  Google Scholar 

  23. Gupta M, Mysore V (2016) Classifications of patterned hair loss: a review. J Cutan Aesthet Surg 9:3–12. https://doi.org/10.4103/0974-2077.178536

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tehrani FR, Rashidi H, Azizi F (2011) The prevalence of idiopathic hirsutism and polycystic ovary syndrome in the Tehran Lipid and Glucose Study. Reprod Biol Endocrinol 9:1–8. https://doi.org/10.1186/1477-7827-9-144

    Article  Google Scholar 

  25. Jaliseh HK, Tehrani FR, Behboudi-Gandevani S, Hosseinpanah F, Khalili D, Cheraghi L, Azizi F (2017) Polycystic ovary syndrome is a risk factor for diabetes and prediabetes in middle-aged but not elderly women: a long-term population-based follow-up study. Fertil Steril 108:1078–1084. https://doi.org/10.1016/j.fertnstert.2017.09.004

    Article  Google Scholar 

  26. Association EAD (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36:S67-74. https://doi.org/10.2337/dc13-S067

    Article  Google Scholar 

  27. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell M, Korinek J, Allison TG, Batsis J, Sert-Kuniyoshi F, Lopez-Jimenez F (2008) Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes 32:959–966. https://doi.org/10.1038/ijo.2008.11

    Article  CAS  Google Scholar 

  28. Griffin BA, Anderson GL, Shih RA, Whitsel EA (2012) Use of alternative time scales in Cox proportional hazard models: implications for time-varying environmental exposures. Stat Med 31:3320–3327. https://doi.org/10.1002/sim.5347

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang Z (2016) Multiple imputation for time series data with Amelia package. Ann Transl Med 4:56. https://doi.org/10.3978/j.issn.2305-5839.2015.12.60

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dover GJ (2009) The Barker hypothesis: how pediatricans will diagnose and prevent common adult-onset diseases. Trans Am Clin Climatol Assoc 120:199–207

    PubMed  PubMed Central  Google Scholar 

  31. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73. https://doi.org/10.1056/NEJMra0708473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu X-Y, Li Z-L, Wu C-Y, Li Y-M, Lin H, Wang S-H, Xiao W-F (2010) Endocrine traits of polycystic ovary syndrome in prenatally androgenized female Sprague–Dawley rats. Endocr J 57:201–209. https://doi.org/10.1507/endocrj.k09e-205

    Article  CAS  PubMed  Google Scholar 

  33. Padmanabhan V, Veiga-Lopez A (2013) Sheep models of polycystic ovary syndrome phenotype. Mol Cell Endocrinol 373:8–20. https://doi.org/10.1016/j.mce.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  34. Huang G, Cherkerzian S, Loucks EB, Buka SL, Handa RJ, Lasley BL, Bhasin S, Goldstein JM (2018) Sex differences in the prenatal programming of adult metabolic syndrome by maternal androgens. J Clin Endocrinol Metab 103:3945–3953. https://doi.org/10.1210/jc.2018-01243

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ramaswamy S, Grace C, Mattei A, Siemienowicz K, Brownlee W, MacCallum J, McNeilly A, Duncan W, Rae M (2016) Developmental programming of polycystic ovary syndrome (PCOS): prenatal androgens establish pancreatic islet α/β cell ratio and subsequent insulin secretion. Sci Rep 6:1–10. https://doi.org/10.1038/srep27408

    Article  CAS  Google Scholar 

  36. Rae M, Grace C, Hogg K, Wilson LM, McHaffie SL, Ramaswamy S, MacCallum J, Connolly F, McNeilly AS, Duncan C (2013) The pancreas is altered by in utero androgen exposure: implications for clinical conditions such as polycystic ovary syndrome (PCOS). PLoS One 8:e56263. https://doi.org/10.1371/journal.pone.0056263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu S, Navarro G, Mauvais-Jarvis F (2010) Androgen excess produces systemic oxidative stress and predisposes to β-cell failure in female mice. PLoS One 5:e11302. https://doi.org/10.1371/journal.pone.0011302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Filippou P, Homburg R (2017) Is foetal hyperexposure to androgens a cause of PCOS? Hum Reprod Update 23:421–432. https://doi.org/10.1093/humupd/dmx013

    Article  CAS  PubMed  Google Scholar 

  39. Whitfield JB (2014) Genetic insights into cardiometabolic risk factors. Clin Biochem Rev 35:15–36

    PubMed  PubMed Central  Google Scholar 

  40. Fernandez-Rhodes L, Young KL, Lilly AG, Raffield LM, Highland HM, Wojcik GL, Agler C, Love S-AM, Okello S, Petty LE (2020) Importance of genetic studies of cardiometabolic disease in diverse populations. Circ Res 126:1816–1840. https://doi.org/10.1161/CIRCRESAHA.120.315893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hayes MG, Urbanek M, Ehrmann DA, Armstrong LL, Lee JY, Sisk R, Karaderi T, Barber TM, McCarthy MI, Franks S (2015) Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat Commun 6:1–13. https://doi.org/10.1038/ncomms8502

    Article  CAS  Google Scholar 

  42. Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, Bjonnes A, Broer L, Dunger DB, Halldorsson BV (2015) Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun 6:1–7. https://doi.org/10.1038/ncomms9464

    Article  CAS  Google Scholar 

  43. Skinner MK (2008) What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol 25:2–6. https://doi.org/10.1016/j.reprotox.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  44. Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13:153–162. https://doi.org/10.1038/nrg3188

    Article  CAS  PubMed  Google Scholar 

  45. Xavier MJ, Roman SD, Aitken RJ, Nixon B (2019) Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 25:519–541. https://doi.org/10.1093/humupd/dmz017

    Article  CAS  Google Scholar 

  46. Illum LRH, Bak ST, Lund S, Nielsen AL (2018) DNA methylation in epigenetic inheritance of metabolic diseases through the male germ line. J Mol Endocrinol 60:R39–R56. https://doi.org/10.1530/JME-17-0189

    Article  CAS  PubMed  Google Scholar 

  47. Maric C (2007) Mechanisms of fetal programming of adult hypertension: role of sex hormones. Hypertension 50:605–606. https://doi.org/10.1161/HYPERTENSIONAHA.107.096768

    Article  CAS  PubMed  Google Scholar 

  48. Lillycrop KA, Burdge GC (2011) Epigenetic changes in early life and future risk of obesity. Int J Obes 35:72–83. https://doi.org/10.1038/ijo.2010.122

    Article  CAS  Google Scholar 

  49. Xu N, Chua AK, Jiang H, Liu N-A, Goodarzi MO (2014) Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes. Mol Endocrinol 28:1329–1336. https://doi.org/10.1210/me.2014-1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu N, Kwon S, Abbott DH, Geller DH, Dumesic DA, Azziz R, Guo X, Goodarzi MO (2011) Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PLoS One 6:e27286. https://doi.org/10.1371/journal.pone.0027286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Petersen A-K, Zeilinger S, Kastenmüller G, Römisch-Margl W, Brugger M, Peters A, Meisinger C, Strauch K, Hengstenberg C, Pagel P (2014) Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet 23:534–545. https://doi.org/10.1093/hmg/ddt430

    Article  CAS  PubMed  Google Scholar 

  52. Nilsson E, Ling C (2017) DNA methylation links genetics, fetal environment, and an unhealthy lifestyle to the development of type 2 diabetes. Clin Epigenet 9:1–8. https://doi.org/10.1186/s13148-017-0399-2

    Article  CAS  Google Scholar 

  53. Xu F, Liu J, Na L, Chen L (2020) Roles of epigenetic modifications in the differentiation and function of pancreatic β-cells. Front Cell Dev Biol 8:748. https://doi.org/10.3389/fcell.2020.00748

    Article  PubMed  PubMed Central  Google Scholar 

  54. Eisner JR, Dumesic DA, Kemnitz JW, Colman RJ, Abbott DH (2003) Increased adiposity in female rhesus monkeys exposed to androgen excess during early gestation. Obes Res 11:279–286. https://doi.org/10.1038/oby.2003.42

    Article  PubMed  Google Scholar 

  55. Veiga-Lopez A, Moeller J, Patel D, Ye W, Pease A, Kinns J, Padmanabhan V (2013) Developmental programming: impact of prenatal testosterone excess on insulin sensitivity, adiposity, and free fatty acid profile in postpubertal female sheep. Endocrinology 154:1731–1742. https://doi.org/10.1210/en.2012-2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Muller G (2011) Let’s shift lipid burden—from large to small adipocytes. Eur J Pharmacol 656:1–4. https://doi.org/10.1016/j.ejphar.2011.01.035

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the project (No. 19894) of the Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MN contributed substantially to conception and design, analysis and interpretation of data, drafted the article and revised and approved the final version to be published. MR contributed substantially to statistical analysis of data, drafted the article and revised and approved the final version to be published. SBG contributed substantially to interpretation of data, drafted the article and revised and approved the final version to be published. FRT contributed substantially to conception and design, analysis and interpretation of data, drafted the article and revised and approved the final version to be published.

Corresponding author

Correspondence to F. Ramezani Tehrani.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethics approval

The ethics review board of the Research Institute for Endocrine Sciences approved the study proposal (approval number: IR.SBMU.ENDOCRINE.REC.1399.015).

Consent to participate

Written informed consent was signed by all participants, after a full explanation of the purpose of the study to them. Written consent was obtained from their parents, if they were under 18 years old.

Consent for publication

All authors approved the final version of article for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noroozzadeh, M., Rahmati, M., Behboudi-Gandevani, S. et al. Maternal hyperandrogenism is associated with a higher risk of type 2 diabetes mellitus and overweight in adolescent and adult female offspring: a long-term population-based follow-up study. J Endocrinol Invest 45, 963–972 (2022). https://doi.org/10.1007/s40618-021-01721-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-021-01721-2

Keywords

Navigation