WHO (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 894:1–8 (1–253)
Google Scholar
Haslam DW, James WPT (2005) Obesity. Lancet 366:1197–1209. https://doi.org/10.1016/S0140-6736(05)67483-1
Article
PubMed
Google Scholar
Adams TD, Davidson LE, Litwin SE, Kolotkin RL, LaMonte MJ, Pendleton RC et al (2012) Health benefits of gastric bypass surgery After 6 years. JAMA-J Am Med Assoc 308:1122–1131. https://doi.org/10.1001/2012.jama.11164
CAS
Article
Google Scholar
Klempel MC, Kroeger CM, Bhutani S, Trepanowski JF, Varady KA (2012) Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J 11:98. https://doi.org/10.1186/1475-2891-11-98
CAS
Article
PubMed
PubMed Central
Google Scholar
Most J, Tosti V, Redman LM, Fontana L (2017) Calorie restriction in humans: an update. Ageing Res Rev 39:36–45. https://doi.org/10.1016/j.arr.2016.08.005
Article
PubMed
Google Scholar
Kushner RF (2018) Weight loss strategies for treatment of obesity: lifestyle management and pharmacotherapy. Prog Cardiovasc Dis 61:246–252. https://doi.org/10.1016/j.pcad.2018.06.001
Article
PubMed
Google Scholar
Lettieri-Barbato D, Giovannetti E, Aquilano K (2016) Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human. Aging-Us 8:3341–3355. https://doi.org/10.18632/aging.101122
CAS
Article
Google Scholar
Neinast MD, Frank AP, Zechner JF, Li Q, Vishvanath L, Palmer BF et al (2015) Activation of natriuretic peptides and the sympathetic nervous system following Roux-en-Y gastric bypass is associated with gonadal adipose tissues browning. Mol Metab 4:427–436. https://doi.org/10.1016/j.molmet.2015.02.006
CAS
Article
PubMed
PubMed Central
Google Scholar
Ali AT, Hochfeld WE, Myburgh R, Pepper MS (2013) Adipocyte and adipogenesis. Eur J Cell Biol 92:229–236. https://doi.org/10.1016/j.ejcb.2013.06.001
CAS
Article
PubMed
Google Scholar
Cinti S (2009) Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol-Endocrinol Metab 297:E977–E986. https://doi.org/10.1152/ajpendo.00183.2009
CAS
Article
PubMed
Google Scholar
Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang A-H et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376. https://doi.org/10.1016/j.cell.2012.05.016
CAS
Article
PubMed
PubMed Central
Google Scholar
Sidossis L, Kajimura S (2015) Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Investig 125:478–486. https://doi.org/10.1172/JCI78362
Article
PubMed
PubMed Central
Google Scholar
Kalinovich AV, de Jong JMA, Cannon B, Nedergaard J (2017) UCP1 in adipose tissues: two steps to full browning. Biochimie 134:127–137. https://doi.org/10.1016/j.biochi.2017.01.007
CAS
Article
PubMed
Google Scholar
Li D, Li S, Pan Q, Zhai H, Peng M, Wang X et al (2018) Gastric mammalian target of rapamycin signaling contributes to inhibition of ghrelin expression induced by Roux-En-Y Gastric Bypass. Cell Physiol Biochem 51:664–680. https://doi.org/10.1159/000495325
CAS
Article
PubMed
Google Scholar
Zhai H, Li Z, Peng M, Huang Z, Qin T, Chen L et al (2018) Takeda G protein-coupled receptor 5-mechanistic target of rapamycin complex 1 signaling contributes to the increment of glucagon-like peptide-1 production after Roux-en-Y Gastric Bypass. EBioMedicine 32:201–214. https://doi.org/10.1016/j.ebiom.2018.05.026
Article
PubMed
PubMed Central
Google Scholar
Pan Q, Qin T, Gao Y, Li S, Li D, Peng M et al (2019) Hepatic mTOR-AKT2-Insig2 signaling pathway contributes to the improvement of hepatic steatosis after Roux-en-Y Gastric Bypass in mice. BBA-Mol Basis Dis 1865:525–534. https://doi.org/10.1016/j.bbadis.2018.12.014
CAS
Article
Google Scholar
Nedergaard J, Cannon B (2014) The browning of white adipose tissue: some burning issues. Cell Metab 20:396–407. https://doi.org/10.1016/j.cmet.2014.07.005
CAS
Article
PubMed
Google Scholar
Inagaki T, Sakai J, Kajimura S (2016) Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol 17:480–495. https://doi.org/10.1038/nrm.2016.62
CAS
Article
PubMed
PubMed Central
Google Scholar
Thompson D, Karpe F, Lafontan M, Frayn K (2012) Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol Rev 92:157–191. https://doi.org/10.1152/physrev.00012.2011
CAS
Article
PubMed
Google Scholar
Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9:191–200. https://doi.org/10.5114/aoms.2013.33181
CAS
Article
PubMed
PubMed Central
Google Scholar
Kajimura S, Saito M (2014) A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol 76:225–249. https://doi.org/10.1146/annurev-physiol-021113-170252
CAS
Article
PubMed
Google Scholar
Thyagarajan B, Foster MT (2017) Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm Mol Biol Clin Investig. https://doi.org/10.1515/hmbci-2017-0016
Article
PubMed
Google Scholar
Barquissau V, Beuzelin D, Pisani DF, Beranger GE, Mairal A, Montagner A et al (2016) White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab 5:352–365. https://doi.org/10.1016/j.molmet.2016.03.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Sun Y, Wang R, Zhao S, Li W, Liu W, Tang L et al (2019) FGF9 inhibits browning program of white adipocytes and associates with human obesity. J Mol Endocrinol 62:79–90. https://doi.org/10.1530/JME-18-0151
CAS
Article
PubMed
Google Scholar
Maurer S, Harms M, Boucher J (2020) The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in man. FEBS J. https://doi.org/10.1111/febs.15470
Article
PubMed
Google Scholar
Thoonen R, Ernande L, Cheng J, Nagasaka Y, Yao V, Miranda-Bezerra A et al (2015) Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy. J Mol Cell Cardiol 84:202–211. https://doi.org/10.1016/j.yjmcc.2015.05.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Qian S-W, Tang Y, Li X, Liu Y, Zhang Y-Y, Huang H-Y et al (2013) BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci USA 110:E798–E807. https://doi.org/10.1073/pnas.1215236110
Article
PubMed
PubMed Central
Google Scholar
Tseng Y-H, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000-U44. https://doi.org/10.1038/nature07221
CAS
Article
PubMed
PubMed Central
Google Scholar
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F et al (2012) FGF21 regulates PGC-1 alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–81. https://doi.org/10.1101/gad.177857.111
CAS
Article
PubMed
PubMed Central
Google Scholar
Lizcano F (2019) The beige adipocyte as a therapy for metabolic diseases. Int J Mol Sci 20:5058. https://doi.org/10.3390/ijms20205058
CAS
Article
PubMed Central
Google Scholar
Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S et al (2014) Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63:4089–99. https://doi.org/10.2337/db14-0746
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang C-H, Lundh M, Fu A, Kriszt R, Huang TL, Lynes MD et al (2020) CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med 12:eaaz8664. https://doi.org/10.1126/scitranslmed.aaz8664
CAS
Article
PubMed
PubMed Central
Google Scholar
Shen H, Jiang L, Lin JD, Omary MB, Rui L (2019) Brown fat activation mitigates alcohol-induced liver steatosis and injury in mice. J Clin Investig 129:2305–2317. https://doi.org/10.1172/JCI124376
Article
PubMed
PubMed Central
Google Scholar
Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326. https://doi.org/10.1126/science.1172539
CAS
Article
PubMed
PubMed Central
Google Scholar
Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K et al (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1:e10. https://doi.org/10.1038/cddis.2009.8
CAS
Article
PubMed
PubMed Central
Google Scholar
La Russa D, Marrone A, Mandala M, Macirella R, Pellegrino D (2020) Antioxidant/anti-inflammatory effects of caloric restriction in an aged and obese rat model: the role of adiponectin. Biomedicines 8:532. https://doi.org/10.3390/biomedicines8120532
CAS
Article
PubMed Central
Google Scholar
Khalafi M, Symonds ME, Akbari A (2021) The impact of exercise training versus caloric restriction on inflammation markers: a systemic review and meta-analysis. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1873732
Article
PubMed
Google Scholar
Reinisch I, Schreiber R, Prokesch A (2020) Regulation of thermogenic adipocytes during fasting and cold. Mol Cell Endocrinol 512:110869. https://doi.org/10.1016/j.mce.2020.110869
CAS
Article
PubMed
Google Scholar
Bielefeldt K (2014) Bariatric surgery versus intensive medical therapy for diabetes. N Engl J Med 371:681–2. https://doi.org/10.1056/NEJMc1407393
Article
PubMed
Google Scholar
Rachid B, van de Sande-Lee S, Rodovalho S, Folli F, Beltramini GC, Morari J et al (2015) Distinct regulation of hypothalamic and brown/beige adipose tissue activities in human obesity. Int J Obes 39:1515–22. https://doi.org/10.1038/ijo.2015.94
CAS
Article
Google Scholar
Lynch L, Hogan AE, Duquette D, Lester C, Banks A, LeClair K et al (2016) iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy. Cell Metab 24:510–9. https://doi.org/10.1016/j.cmet.2016.08.003
CAS
Article
PubMed
PubMed Central
Google Scholar