Abstract
Cadmium (Cd), a highly toxic heavy metal, is found in soil, environment and contaminated water and food. Moreover, Cd is used in various industrial activities, such as electroplating, batteries production, fertilizers, while an important non-occupational source is represented by cigarette smoking, as Cd deposits in tobacco leaves. Since many years it is clear a strong correlation between Cd body accumulation and incidence of many diseases. Indeed, acute exposure to Cd can cause inflammation and affect many organs such as kidneys and liver. Furthermore, the attention has focused on its activity as environmental pollutant and endocrine disruptor able to interfere with metabolic and energy balance of living beings. Both in vitro and in vivo experiments have demonstrated that the Cd-exposure is related to metabolic diseases such as obesity, diabetes and osteoporosis even if human studies are still controversial. Recent data show that Cd-exposure is associated with atherosclerosis, hypertension and endothelial damage that are responsible for cardiovascular diseases. Due to the large environmental diffusion of Cd, in this review, we summarize the current knowledge concerning the role of Cd in the incidence of metabolic and cardiovascular diseases.
This is a preview of subscription content, access via your institution.

References
Tarakina NV, Verberck B (2017) A portrait of cadmium. Nat Chem 9(1):96. https://doi.org/10.1038/nchem.2699
Nordberg GF, Bernard A, Diamond GL, Duffus JH, Illing P, Nordberg M, Bergdahl IA, Jin T, Skerfving S (2018) Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure Appl Chem 90(4):755–808. https://doi.org/10.1515/pac-2016-0910
Zhang D, Zhang T, Liu J, Chen J, Li Y, Ning G, Huo N, Tian W, Ma H (2019) Zn supplement-antagonized cadmium-induced cytotoxicity in macrophages in vitro: involvement of cadmium bioaccumulation and metallothioneins regulation. J Agric Food Chem 67(16):4611–4622. https://doi.org/10.1021/acs.jafc.9b00232
Vainio H, Heseltine E, Partensky C, Wilbourn J (1993) Meeting of the IARC working group on beryllium, cadmium, mercury and exposures in the glass manufacturing industry. Scand J Work Environ Health. https://doi.org/10.5271/sjweh.1461
Chowdhury R (2019) Kontamination mit Schwermetallen erhöht kardiovaskuläres Risiko. Dtsch Med Wochenschr. https://doi.org/10.1136/bmj.k3310
Fittipaldi S, Bimonte V, Soricelli A, Aversa A, Lenzi A, Greco E, Migliaccio S (2019) Cadmium exposure alters steroid receptors and proinflammatory cytokine levels in endothelial cells in vitro: a potential mechanism of endocrine disruptor atherogenic effect. J Endocrinol Invest 42(6):727–739. https://doi.org/10.1007/s40618-018-0982-1
Brama M, Gnessi L, Basciani S, Cerulli N, Politi L, Spera G, Mariani S, Cherubini S, d’Abusco AS, Scandurra R, Migliaccio S (2007) Cadmium induces mitogenic signaling in breast cancer cell by an ERα-dependent mechanism. Mol Cell Endocrinol 264(1–2):102–108. https://doi.org/10.1016/j.mce.2006.10.013
Thijssen S, Lambrichts I, Maringwa J, Van Kerkhove E (2007) Changes in expression of fibrotic markers and histopathological alterations in kidneys of mice chronically exposed to low and high Cd doses. Toxicology 238(2–3):200–210. https://doi.org/10.1016/j.tox.2007.06.087
Borné Y, Fagerberg B, Persson M, Östling G, Söderholm M, Hedblad B, Sallsten G, Barregard L, Engström G (2017) Cadmium, carotid atherosclerosis, and incidence of ischemic stroke. J Am Heart Assoc 6(12):e006415. https://doi.org/10.1161/JAHA.117.006415
de Angelis C, Galdiero M, Pivonello C, Salzano C, Gianfrilli D, Piscitelli P, Lenzi A, Colao A, Pivonello R (2017) The environment and male reproduction: the effect of cadmium exposure on reproductive function and its implication in fertility. Reprod Toxicol 73:105–127. https://doi.org/10.1016/j.reprotox.2017.07.021
Tinkov AA, Filippini T, Ajsuvakova OP, Aaseth J, Gluhcheva YG, Ivanova JM, Bjørklund G, Skalnaya MG, Gatiatulina ER, Popova EV (2017) The role of cadmium in obesity and diabetes. Sci Total Environ 601:741–755. https://doi.org/10.1016/j.scitotenv.2017.05.224
Buha A, Jugdaohsingh R, Matovic V, Bulat Z, Antonijevic B, Kerns JG, Goodship A, Hart A, Powell JJ (2019) Bone mineral health is sensitively related to environmental cadmium exposure-experimental and human data. Environ Res 176:108539. https://doi.org/10.1016/j.envres.2019.108539
FAO/WHO (2013). https://apps.who.int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=1376
Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L (2012) Toxicological profile for Cadmium. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US) Public Health Statement Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK158840/
Vacchi-Suzzi C, Kruse D, Harrington J, Levine K, Meliker JR (2016) Erratum to: is urinary cadmium a biomarker of long-term exposure in humans? A review. Curr Environ Health Rep 3(4):493–494. https://doi.org/10.1007/s40572-016-0107-y
Fels J, Scharner B, Zarbock R, Zavala Guevara IP, Lee W-K, Barbier OC, Thévenod F (2019) Cadmium complexed with β2-microglubulin, albumin and lipocalin-2 rather than metallothionein cause megalin: cubilin dependent toxicity of the renal proximal tubule. Int J Mol Sci 20(10):2379. https://doi.org/10.3390/ijms20102379
Li Y, Huang Y-s, He B, Liu R, Qu G, Yin Y, Shi J, Hu L, Jiang G (2020) Cadmium-binding proteins in human blood plasma. Ecotoxicol Environ Saf 188:109896
Akerstrom M, Barregard L, Lundh T, Sallsten G (2014) Variability of urinary cadmium excretion in spot urine samples, first morning voids, and 24 h urine in a healthy non-smoking population: implications for study design. J Expo Sci Environ Epidemiol 24(2):171–179. https://doi.org/10.1038/jes.2013.58
Becker K, Kaus S, Krause C, Lepom P, Schulz C, Seiwert M, Seifert B (2002) German Environmental Survey 1998 (GerES III): environmental pollutants in blood of the German population. Int J Hyg Environ Health 205(4):297–308. https://doi.org/10.1078/1438-4639-00188
Ganguly K, Levänen B, Palmberg L, Åkesson A, Lindén A (2018) Cadmium in tobacco smokers: a neglected link to lung disease? Eur Respir Rev. https://doi.org/10.1183/16000617.0122-2017
Pickering AD, Sumpter JP (2003) Peer reviewed: comprehending endocrine disruptors in aquatic environments. ACS Pubs. https://doi.org/10.1021/es032570f
Colborn T, Vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101(5):378–384
Rudel RA, Perovich LJ (2009) Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ 43(1):170–181. https://doi.org/10.1016/j.atmosenv.2008.09.025
Brander SM, Gabler MK, Fowler NL, Connon RE, Schlenk D (2016) Pyrethroid pesticides as endocrine disruptors: molecular mechanisms in vertebrates with a focus on fishes. Environ Sci Technol 50(17):8977–8992. https://doi.org/10.1021/acs.est.6b02253
Combarnous Y (2017) Endocrine disruptor compounds (EDCs) and agriculture: the case of pesticides. CR Biol 340(9–10):406–409. https://doi.org/10.1016/j.crvi.2017.07.009
Rochefort H (2017) Endocrine disruptors (EDs) and hormone-dependent cancers: correlation or causal relationship? CR Biol 340(9–10):439–445. https://doi.org/10.1016/j.crvi.2017.07.007
Beausoleil C, Emond C, Cravedi J-P, Antignac J-P, Applanat M, Appenzeller BR, Beaudouin R, Belzunces LP, Canivenc-Lavier M-C, Chevalier N (2018) Regulatory identification of BPA as an endocrine disruptor: context and methodology. Mol Cell Endocrinol 475:4–9. https://doi.org/10.1016/j.mce.2018.02.001
Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30(4):293–342. https://doi.org/10.1210/er.2009-0002
Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127(3–5):204–215
Buha A, Matovic V, Antonijevic B, Bulat Z, Curcic M, Renieri EA, Tsatsakis AM, Schweitzer A, Wallace D (2018) Overview of cadmium thyroid disrupting effects and mechanisms. Int J Mol Sci 19(5):1501. https://doi.org/10.3390/ijms19051501
Nie X, Chen Y, Chen Y, Chen C, Han B, Li Q, Zhu C, Xia F, Zhai H, Wang N (2017) Lead and cadmium exposure, higher thyroid antibodies and thyroid dysfunction in Chinese women. Environ Pollut 230:320–328. https://doi.org/10.1016/j.envpol.2017.06.052
Yu Y, Ma R, Yu L, Cai Z, Li H, Zuo Y, Wang Z, Li H (2018) Combined effects of cadmium and tetrabromobisphenol a (TBBPA) on development, antioxidant enzymes activity and thyroid hormones in female rats. Chem Biol Interact 289:23–31. https://doi.org/10.1016/j.cbi.2018.04.024
Rezaei M, Javadmoosavi SY, Mansouri B, Azadi NA, Mehrpour O, Nakhaee S (2019) Thyroid dysfunction: how concentration of toxic and essential elements contribute to risk of hypothyroidism, hyperthyroidism, and thyroid cancer. Environ Sci Pollut Res 26(35):35787–35796. https://doi.org/10.1007/s11356-019-06632-7
Chung SM, Moon JS, Yoon JS, Won KC, Lee HW (2019) Sex-specific effects of blood cadmium on thyroid hormones and thyroid function status: Korean nationwide cross-sectional study. J Trace Elem Med Biol 53:55–61. https://doi.org/10.1016/j.jtemb.2019.02.003
Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB (2009) Cadmium—a metallohormone? Toxicol Appl Pharmacol 238(3):266–271. https://doi.org/10.1016/j.taap.2009.03.025
Aquino NB, Sevigny MB, Sabangan J, Louie MC (2012) The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not? J Environ Sci Health C 30(3):189–224. https://doi.org/10.1080/10590501.2012.705159
Kresovich JK, Erdal S, Chen HY, Gann PH, Argos M, Rauscher GH (2019) Metallic air pollutants and breast cancer heterogeneity. Environ Res 177:108639. https://doi.org/10.1016/j.envres.2019.108639
Strumylaite L, Kregzdyte R, Bogusevicius A, Poskiene L, Baranauskiene D, Pranys D (2019) Cadmium exposure and risk of breast cancer by histological and tumor receptor subtype in white caucasian women: a hospital-based case-control study. Int J Mol Sci 20(12):3029. https://doi.org/10.3390/ijms20123029
Bloomfield M, Louie MC (2019) Chronic cadmium exposure decreases the dependency of MCF7 breast cancer cells on ERα. Sci Rep 9(1):1–11
Wang Y, Shi L, Li J, Li L, Wang H, Yang H (2019) Long-term cadmium exposure promoted breast cancer cell migration and invasion by up-regulating TGIF. Ecotoxicol Environ Saf 175:110–117. https://doi.org/10.1016/j.ecoenv.2019.03.046
Waalkes MP, Rehm S (1994) Cadmium and prostate cancer. J Toxicol Environ Health Part A 43(3):251–269. https://doi.org/10.1080/15287399409531920
Dai C, Heemers H, Sharifi N (2017) Androgen signaling in prostate cancer. Cold Spring Harb Perspect Med 7(9):a030452. https://doi.org/10.1101/cshperspect.a030452
Webber MM (1985) Selenium prevents the growth stimulatory effects of cadmium on human prostatic epithelium. Biochem Biophys Res Commun 127(3):871–877
Voeller HJ, Wilding G, Gelmann EP (1991) V-ras H expression confers hormone-independent in vitro growth to LNCaP prostate carcinoma cells. Mol Endocrinol 5(2):209–216. https://doi.org/10.1210/mend-5-2-209
Martin MB, Voeller HJ, Gelmann EP, Lu J, Stoica E-G, Hebert EJ, Reiter R, Singh B, Danielsen M, Pentecost E (2002) Role of cadmium in the regulation of AR gene expression and activity. Endocrinology 143(1):263–275. https://doi.org/10.1210/endo.143.1.8581
Neslund-Dudas CM, McBride RB, Kandegedara A, Rybicki BA, Kryvenko ON, Chitale D, Gupta N, Williamson SR, Rogers CG, Cordon-Cardo C (2018) Association between cadmium and androgen receptor protein expression differs in prostate tumors of African American and European American men. J Trace Elem Med Biol 48:233–238. https://doi.org/10.1016/j.jtemb.2018.04.006
Aimola P, Carmignani M, Volpe AR, Di Benedetto A, Claudio L, Waalkes MP, Van Bokhoven A, Tokar EJ, Claudio PP (2012) Cadmium induces p53-dependent apoptosis in human prostate epithelial cells. PLoS ONE 7(3):e33647. https://doi.org/10.1371/journal.pone.0033647
Chandrasekaran B, Dahiya NR, Tyagi A, Kolluru V, Saran U, Baby BV, States JC, Haddad AQ, Ankem MK, Damodaran C (2020) Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis 9(2):1–10. https://doi.org/10.1038/s41389-020-0202-7
Santana VP, Salles ÉS, Correa DE, Gonçalves BF, Campos SG, Justulin LA, Godinho AF, Scarano WR (2016) Long-term effects of perinatal exposure to low doses of cadmium on the prostate of adult male rats. Int J Exp Pathol 97(4):310–316
Visser A, Deklerk J (1978) The effect of dietary cadmium on prostate growth. Trans Am Assoc Genitourin Surg 70:66–68
Lubrano C, Genovesi G, Specchia P, Costantini D, Mariani S, Petrangeli E, Lenzi A, Gnessi L (2013) Obesity and metabolic comorbidities: environmental diseases? Oxi Med Cell Longev. https://doi.org/10.1155/2013/640673
Park SS, Skaar DA, Jirtle RL, Hoyo C (2017) Epigenetics, obesity and early-life cadmium or lead exposure. Epigenomics 9(1):57–75. https://doi.org/10.2217/epi-2016-0047
Baillie-Hamilton PF (2002) Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 8(2):185–192. https://doi.org/10.1089/107555302317371479
Papa V, Wannenes F, Crescioli C, Caporossi D, Lenzi A, Migliaccio S, Di Luigi L (2014) The environmental pollutant cadmium induces homeostasis alteration in muscle cells in vitro. J Endocrinol Invest 37(11):1073–1080
Darbre PD (2017) Endocrine disruptors and obesity. Current Obes Rep 6(1):18–27. https://doi.org/10.1007/s13679-017-0240-4
González-Casanova JE, Pertuz-Cruz SL, Caicedo-Ortega NH, Rojas-Gomez DM (2020) Adipogenesis regulation and endocrine disruptors: emerging insights in obesity. Biomed Res Int. https://doi.org/10.1155/2020/7453786
Kassotis CD, Nagel SC, Stapleton HM (2018) Unconventional oil and gas chemicals and wastewater-impacted water samples promote adipogenesis via PPARγ-dependent and independent mechanisms in 3T3-L1 cells. Sci Total Environ 640:1601–1610. https://doi.org/10.1016/j.scitotenv.2018.05.030
Doke M, Avecilla V, Felty Q (2018) Inhibitor of differentiation-3 and estrogenic endocrine disruptors: implications for susceptibility to obesity and metabolic disorders. BioMed Res Int. https://doi.org/10.1155/2018/6821601
Verbanck M, Canouil M, Leloire A, Dhennin V, Coumoul X, Yengo L, Froguel P, Poulain-Godefroy O (2017) Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles. PLoS ONE 12(6):e0179583. https://doi.org/10.1371/journal.pone.0179583
Avecilla V, Doke M, Felty Q (2017) Contribution of inhibitor of dna binding/differentiation-3 and endocrine disrupting chemicals to pathophysiological aspects of chronic disease. Biomed Res Int. https://doi.org/10.1155/2017/6307109
Kim JT, Lee HK (2017) Childhood obesity and endocrine disrupting chemicals. Ann Pediatr Endocrinol Metab 22(4):219. https://doi.org/10.6065/apem.2017.22.4.219
Shoucri BM, Martinez ES, Abreo TJ, Hung VT, Moosova Z, Shioda T, Blumberg B (2017) Retinoid X receptor activation alters the chromatin landscape to commit mesenchymal stem cells to the adipose lineage. Endocrinology 158(10):3109–3125. https://doi.org/10.1210/en.2017-00348
Lejonklou MH, Dunder L, Bladin E, Pettersson V, Rönn M, Lind L, Waldén TB, Lind PM (2017) Effects of low-dose developmental bisphenol A exposure on metabolic parameters and gene expression in male and female Fischer 344 rat offspring. Environ Health Perspect 125(6):067018. https://doi.org/10.1289/EHP505
Green AJ, Hoyo C, Mattingly CJ, Luo Y, Tzeng J-Y, Murphy SK, Buchwalter DB, Planchart A (2018) Cadmium exposure increases the risk of juvenile obesity: a human and zebrafish comparative study. Int J Obes 42(7):1285–1295. https://doi.org/10.1038/s41366-018-0036-y
Haswell-Elkins M, Mcgrath V, Moore M, Satarug S, Walmby M, Ng J (2007) Exploring potential dietary contributions including traditional seafood and other determinants of urinary cadmium levels among indigenous women of a Torres Strait Island (Australia). J Eposure Sci Environ Epidemiol 17(3):298–306. https://doi.org/10.1038/sj.jes.7500547
Padilla MA, Elobeid M, Ruden DM, Allison DB (2010) An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99–02. Int J Environ Res Public Health 7(9):3332–3347. https://doi.org/10.3390/ijerph7093332
Akinloye O, Ogunleye K, Oguntibeju OO (2010) Cadmium, lead, arsenic and selenium levels in patients with type 2 diabetes mellitus. Afr J Biotech 9(32):5189–5195
Nie X, Wang N, Chen Y, Chen C, Han B, Zhu C, Chen Y, Xia F, Cang Z, Lu M (2016) Blood cadmium in Chinese adults and its relationships with diabetes and obesity. Environ Sci Pollut Res 23(18):18714–18723. https://doi.org/10.1007/s11356-016-7078-2
Skalnaya MG, Tinkov AA, Demidov VA, Serebryansky EP, Nikonorov AA, Skalny AV (2014) Hair toxic element content in adult men and women in relation to body mass index. Biol Trace Elem Res 161(1):13–19. https://doi.org/10.1007/s12011-014-0082-9
El-Soud N, El-Laithy N, El-Saeed G, Wahby M, Khalil M, Morsy F, Shaffie N (2011) Antidiabetic activities of Foeniculum vulgare Mill. essential oil in streptozotocin-induced diabetic rats. Maced J Med Sci 4(2):139–146. https://doi.org/10.3889/MJMS.1857-5773.2011.0184
Shao W, Liu Q, He X, Liu H, Gu A, Jiang Z (2017) Association between level of urinary trace heavy metals and obesity among children aged 6–19 years: NHANES 1999–2011. Environ Sci Pollut Res 24(12):11573–11581. https://doi.org/10.1007/s11356-017-8803-1
Jiang F, Zhi X, Xu M, Li B, Zhang Z (2018) Gender-specific differences of interaction between cadmium exposure and obesity on prediabetes in the NHANES 2007–2012 population. Endocrine 61(2):258–266. https://doi.org/10.1007/s12020-018-1623-3
Noor N, Zong G, Seely EW, Weisskopf M, James-Todd T (2018) Urinary cadmium concentrations and metabolic syndrome in US adults: The National Health and Nutrition Examination Survey 2001–2014. Environ Int 121:349–356. https://doi.org/10.1016/j.envint.2018.08.029
Huzior-Bałajewicz A, Pietrzyk J, Schlegel-Zawadzka M, Piatkowska E, Zachwieja Z (2001) The influence of lead and cadmium environmental pollution on anthropometric health factors in children. Przegl Lek 58(4):315
Qin YY, Leung CKM, Leung AOW, Wu SC, Zheng JS, Wong MH (2010) Persistent organic pollutants and heavy metals in adipose tissues of patients with uterine leiomyomas and the association of these pollutants with seafood diet, BMI, and age. Environ Sci Pollut Res 17(1):229–240
Adnan JA, Azhar SS, Hasni JM, Ahmad JS (2012) Urinary cadmium concentration and its risk factors among adults in Tanjung Karang, Selangor. Am-Eur J Toxicol Sci 4(2):80–88. https://doi.org/10.5829/idosi.aejts.2012.4.2.6331
Kelishadi R, Askarieh A, Motlagh ME, Tajadini M, Heshmat R, Ardalan G, Fallahi S, Poursafa P (2013) Association of blood cadmium level with cardiometabolic risk factors and liver enzymes in a nationally representative sample of adolescents: the CASPIAN-III study. J Environ Public Health. https://doi.org/10.1155/2013/142856
Park S, Lee B-K (2013) Body fat percentage and hemoglobin levels are related to blood lead, cadmium, and mercury concentrations in a Korean Adult Population (KNHANES 2008–2010). Biol Trace Elem Res 151(3):315–323. https://doi.org/10.1007/s12011-012-9566-7
Gonzalez-Reimers E, Martín-González C, Galindo-Martín L, Aleman-Valls M, Velasco-Vázquez J, Arnay-De-La-Rosa M, Pérez-Hernández O, Luis RH (2014) Lead, cadmium and zinc in hair samples: relationship with dietary habits and urban environment. Biol Trace Elem Res 157(3):205–210
Ahn B, Kim S-H, Park M-J (2017) Blood cadmium concentrations in Korean adolescents: from the Korea National Health and Nutrition Examination Survey 2010–2013. Int J Hyg Environ Health 220(1):37–42. https://doi.org/10.1016/j.ijheh.2016.10.003
Rotter I, Kosik-Bogacka D, Dołęgowska B, Safranow K, Lubkowska A, Laszczyńska M (2015) Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int J Environ Res Public Health 12(4):3944–3961. https://doi.org/10.3390/ijerph120403944
Ficková M, Eybl V, Kotyzová D, Mičková V, Möstbök S, Brtko J (2003) Long lasting cadmium intake is associated with reduction of insulin receptors in rat adipocytes. Biometals 16(4):561–566. https://doi.org/10.1023/A:1023485130767
Huang Y, Zhang W, Li H (2003) Effect of cadmium on body weight and organ coefficient of ovaries in female rats. Occup Health 19:7–9
Singh PK, Baxi D, Diwedi R, Ramachandran A (2012) Prior cadmium exposure improves glucoregulation in diabetic rats but exacerbates effects on metabolic dysregulation, oxidative stress, and hepatic and renal toxicity. Drug Chem Toxicol 35(2):167–177. https://doi.org/10.3109/01480545.2011.589450
Treviño S, Waalkes MP, Hernández JAF, León-Chavez BA, Aguilar-Alonso P, Brambila E (2015) Chronic cadmium exposure in rats produces pancreatic impairment and insulin resistance in multiple peripheral tissues. Arch Biochem Biophys 583:27–35. https://doi.org/10.1016/j.abb.2015.07.010
Kawakami T, Nishiyama K, Kadota Y, Sato M, Inoue M, Suzuki S (2013) Cadmium modulates adipocyte functions in metallothionein-null mice. Toxicol Appl Pharmacol 272(3):625–636. https://doi.org/10.1016/j.taap.2013.07.015
Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z (2015) Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem Res Toxicol 28(10):2000–2009. https://doi.org/10.1021/acs.chemrestox.5b00237
Yamamoto A, Wada O, Ono T, Ono H (1986) Cadmium stimulates glucose metabolism in rat adipocytes. J Inorg Biochem 27(3):221–226. https://doi.org/10.1016/0162-0134(86)80063-0
Kang D, Khil L-Y, Lee B-H, Moon C-K (2005) Effects of cadmium on glucose transport in 3T3-L1 adipocytes. Environ Health Toxicol 20(1):87–95
Harrison SA, Buxton JM, Clancy BM, Czech MP (1991) Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells. J Biol Chem 266(29):19438–19449
Lachaal M, Liu H, Kim S-s, Jung CY (1996) Effects of cadmium on glucose transport in rat adipocytes and human erythrocytes: stimulation of GLUT1 catalytic activity. Exp Mol Med 28(1):33–40. https://doi.org/10.1038/emm.1996.6
Lachaal M, Liu H, Kim S-s, Spangler RA, Jung CY (1996) Cadmium increases GLUT1 substrate binding affinity in vitro while reducing its cytochalasin B binding affinity. Biochemistry 35(47):14958–14962. https://doi.org/10.1021/bi9617320
Han JC, Park SY, Hah BG, Choi GH, Kim YK, Kwon TH, Kim EK, Lachaal M, Jung CY, Lee W (2003) Cadmium induces impaired glucose tolerance in rat by down-regulating GLUT4 expression in adipocytes. Arch Biochem Biophys 413(2):213–220
Moon J, Yoo B (2008) Protective effects of propolis on cadmium-induced cell death of 3T3-L1 adipocytes. Korean J Apic 23(4):289–294
Kawakami T, Sugimoto H, Furuichi R, Kadota Y, Inoue M, Setsu K, Suzuki S, Sato M (2010) Cadmium reduces adipocyte size and expression levels of adiponectin and Peg1/Mest in adipose tissue. Toxicology 267(1–3):20–26. https://doi.org/10.1016/j.tox.2009.07.022
Lee EJ, Moon JY, Yoo BS (2012) Cadmium inhibits the differentiation of 3T3-L1 preadipocyte through the C/EBPα and PPARγ pathways. Drug Chem Toxicol 35(2):225–231. https://doi.org/10.3109/01480545.2011.591401
Levy J, Gyarmati J, Lesko J, Adler R, Stevens W (2000) Dual regulation of leptin secretion: intracellular energy and calcium dependence of regulated pathway. Am J Physiol Endocrinol Metab 278:E892–E901. https://doi.org/10.1152/ajpendo.2000.278.5.E892
Planchart A, Green A, Hoyo C, Mattingly CJ (2018) Heavy metal exposure and metabolic syndrome: evidence from human and model system studies. Curr Environ Health Rep 5(1):110–124. https://doi.org/10.1007/s40572-018-0182-3
Cho N, Shaw J, Karuranga S, Huang Y, da Rocha FJ, Ohlrogge A, Malanda B (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281
Eze IC, Schaffner E, Foraster M, Imboden M, von Eckardstein A, Gerbase MW, Rothe T, Rochat T, Künzli N, Schindler C (2015) Long-term exposure to ambient air pollution and metabolic syndrome in adults. PLoS ONE 10(6):e0130337. https://doi.org/10.1371/journal.pone.0130337
Basner M, Riggs DW, Conklin DJ (2020) Environmental determinants of hypertension and diabetes mellitus: sounding off about the effects of noise. Am Heart Assoc. https://doi.org/10.1161/JAHA.120.016048
Yang M, Cheng H, Shen C, Liu J, Zhang H, Cao J, Ding R (2020) Effects of long-term exposure to air pollution on the incidence of type 2 diabetes mellitus: a meta-analysis of cohort studies. Environ Sci Pollut Res 27(1):798–811. https://doi.org/10.1007/s11356-019-06824-1
Lei L-J, Chen L, Jin T-Y, Nordberg M, Chang X-L (2007) Estimation of benchmark dose for pancreatic damage in cadmium-exposed smelters. Toxicol Sci 97(1):189–195. https://doi.org/10.1093/toxsci/kfm016
Lei L, Guo J, Shi X, Kang H, Wang T, Zhang Z, Gao Y (2019) Relationship between urinary cadmium and type 2 diabetes mellitus in adults. Zhonghua Liu Xing Bing Xue Za Zhi 40(2):207–211
Guo F-F, Hu Z-Y, Li B-Y, Qin L-Q, Fu C, Yu H, Zhang Z-L (2019) Evaluation of the association between urinary cadmium levels below threshold limits and the risk of diabetes mellitus: a dose-response meta-analysis. Environ Sci Pollut Res 26(19):19272–19281
Trouiller-Gerfaux P, Podglajen E, Hulo S, Richeval C, Allorge D, Garat A, Matran R, Amouyel P, Meirhaeghe A, Dauchet L (2019) The association between blood cadmium and glycated haemoglobin among never-, former, and current smokers: a cross-sectional study in France. Environ Res 178:108673. https://doi.org/10.1016/j.envres.2019.108673
Xiao L, Zhou Y, Ma J, Cao L, Zhu C, Li W, Wang D, Fan L, Ye Z, Chen W (2019) Roles of C-reactive protein on the association between urinary cadmium and type 2 diabetes. Environ Pollut 255:113341. https://doi.org/10.1016/j.envpol.2019.113341
Bell R, Early J, Nonavinakere V, Mallory Z (1990) Effect of cadmium on blood glucose level in the rat. Toxicol Lett 54(2–3):199–205. https://doi.org/10.1016/0378-4274(90)90184-N
Merali Z, Singhal R (1980) Diabetogenic effects of chronic oral cadmium administration to neonatal rats. Br J Pharmacol 69(1):151–157. https://doi.org/10.1111/j.1476-5381.1980.tb10895.x
Chapatwala K, Rajanna E, Desaiah D (1980) Cadmium induced changes in gluconeogenic enzymes in rat kidney and liver. Drug Chem Toxicol 3(4):407–420. https://doi.org/10.3109/01480548009030129
Lei L-J, Jin T-Y, Zhou Y-F (2007) Insulin expression in rats exposed to cadmium. Biomed Environ Sci 20(4):295–301
Lei L-J, Jin T-Y, Zhou Y-F (2005) Effects of cadmium on levels of insulin in rats. Wei Sheng Yan Jiu 34(4):394–396
Lei L, Jin T, Zhou Y (2005) The toxic effects of cadmium on pancreas. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 23(1):45–49
Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238(3):289–293. https://doi.org/10.1016/j.taap.2009.03.007
Jacquet A, Arnaud J, Hininger-Favier I, Hazane-Puch F, Couturier K, Lénon M, Lamarche F, Ounnas F, Fontaine E, Moulis J-M (2018) Impact of chronic and low cadmium exposure of rats: sex specific disruption of glucose metabolism. Chemosphere 207:764–773. https://doi.org/10.1016/j.chemosphere.2018.05.099
Yau ET, Mennear JH (1977) Pancreatic metallothionein: protection against cadmium-induced inhibition of insulin secretory activity. Toxicol Appl Pharmacol 39(3):515–520
El Muayed M, Raja MR, Zhang X, MacRenaris KW, Bhatt S, Chen X, Urbanek M, O’Halloran TV, Lowe J, William L (2012) Accumulation of cadmium in insulin-producing β cells. Islets 4(6):405–416. https://doi.org/10.4161/isl.23101
Chang K-C, Hsu C-C, Liu S-H, Su C-C, Yen C-C, Lee M-J, Chen K-L, Ho T-J, Hung D-Z, Wu C-C (2013) Cadmium induces apoptosis in pancreatic β-cells through a mitochondria-dependent pathway: the role of oxidative stress-mediated c-Jun N-terminal kinase activation. PLoS ONE 8(2):e54374. https://doi.org/10.1371/journal.pone.0054374
Mohammadi P, Rahimifard M, Baeeri M, Abdollahi M, Mostafalou S (2019) Mechanistic assessment of cadmium toxicity in association with the functions of estrogen receptors in the Langerhans islets. Iranian J Basic Med Sci 22(4):445. https://doi.org/10.22038/ijbms.2019.33939.8076
Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141
Wallin M, Barregard L, Sallsten G, Lundh T, Karlsson MK, Lorentzon M, Ohlsson C, Mellström D (2016) Low-level cadmium exposure is associated with decreased bone mineral density and increased risk of incident fractures in elderly men: the MrOS Sweden Study. J Bone Miner Res 31(4):732–741. https://doi.org/10.1002/jbmr.2743
Scimeca M, Feola M, Romano L, Rao C, Gasbarra E, Bonanno E, Brandi ML, Tarantino U (2017) Heavy metals accumulation affects bone microarchitecture in osteoporotic patients. Environ Toxicol 32(4):1333–1342. https://doi.org/10.1002/tox.22327
Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23(5):783–792
Chen X, Zhu G, Jin T, Lei L, Liang Y (2011) Bone mineral density is related with previous renal dysfunction caused by cadmium exposure. Environ Toxicol Pharmacol 32(1):46–53. https://doi.org/10.1016/j.etap.2011.03.007
Rodríguez J, Mandalunis PM (2018) A review of metal exposure and its effects on bone health. J Toxicol. https://doi.org/10.1155/2018/4854152
Ibrahim KS, Beshir S, Shahy EM, Shaheen W (2016) Effect of occupational cadmium exposure on parathyroid gland. Open Access Maced J Med Sci 4(2):302. https://doi.org/10.3889/oamjms.2016.042
Nishijo M, Nambunmee K, Suvagandha D, Swaddiwudhipong W, Ruangyuttikarn W, Nishino Y (2017) Gender-specific impact of cadmium exposure on bone metabolism in older people living in a cadmium-polluted area in Thailand. Int J Environ Res Public Health 14(4):401. https://doi.org/10.3390/ijerph14040401
Wallin M, Sallsten G, Fabricius-Lagging E, Öhrn C, Lundh T, Barregard L (2013) Kidney cadmium levels and associations with urinary calcium and bone mineral density: a cross-sectional study in Sweden. Environ Health 12(1):22. https://doi.org/10.1186/1476-069X-12-22
Kazantzis G (2004) Cadmium, osteoporosis and calcium metabolism. Biometals 17(5):493–498. https://doi.org/10.1023/b:biom.0000045727.76054.f3
Åkesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, Skerfving S, Vahter M (2006) Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect 114(6):830–834. https://doi.org/10.1289/ehp.8763
Chen X, Wang Z, Zhu G, Nordberg GF, Jin T, Ding X (2019) The association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population. J Eposure Sci Environ Epidemiol 29(3):435–443. https://doi.org/10.1038/s41370-018-0057-6
Malin Igra A, Vahter M, Raqib R, Kippler M (2019) Early-life cadmium exposure and bone-related biomarkers: a longitudinal study in children. Environ Health Perspect 127(3):037003. https://doi.org/10.1289/EHP3655
Li X, Li R, Yan J, Song Y, Huo J, Lan Z, Chen J, Zhang L (2020) Co-exposure of cadmium and lead on bone health in a southwestern Chinese population aged 40–75 years. J Appl Toxicol 40(3):352–362. https://doi.org/10.1002/jat.3908
Brzóska MM, Moniuszko-Jakoniuk J (2004) Low-level exposure to cadmium during the lifetime increases the risk of osteoporosis and fractures of the lumbar spine in the elderly: studies on a rat model of human environmental exposure. Toxicol Sci 82(2):468–477
Brzóska MM, Moniuszko-Jakoniuk J (2005) Disorders in bone metabolism of female rats chronically exposed to cadmium. Toxicol Appl Pharmacol 202(1):68–83
Youness ER, Mohammed NA, Morsy FA (2012) Cadmium impact and osteoporosis: mechanism of action. Toxicol Mech Methods 22(7):560–567. https://doi.org/10.3109/15376516.2012.702796
Rodríguez J, Mandalunis PM (2016) Effect of cadmium on bone tissue in growing animals. Exp Toxicol Pathol 68(7):391–397. https://doi.org/10.1016/j.etp.2016.06.001
Lv Y-J, Wei Q-Z, Zhang Y-C, Huang R, Li B-S, Tan J-B, Wang J, Ling H-T, Wu S-X, Yang X-F (2019) Low-dose cadmium exposure acts on rat mesenchymal stem cells via RANKL/OPG and downregulate osteogenic differentiation genes. Environ Pollut 249:620–628. https://doi.org/10.1016/j.envpol.2019.03.027
He S, Zhuo L, Cao Y, Liu G, Zhao H, Song R, Liu Z (2020) Effect of cadmium on osteoclast differentiation during bone injury in female mice. Environ Toxicol 35(4):487–494. https://doi.org/10.1002/tox.22884
Chen X, Zhu G, Gu S, Jin T, Shao C (2009) Effects of cadmium on osteoblasts and osteoclasts in vitro. Environ Toxicol Pharmacol 28(2):232–236. https://doi.org/10.1016/j.etap.2009.04.010
Chen X, Zhu G, Jin T, Zhou Z, Gu S, Qiu J, Xiao H (2012) Cadmium stimulates the osteoclastic differentiation of RAW264. 7 cells in presence of osteoblasts. Biol Trace Elem Res 146(3):349–353. https://doi.org/10.1007/s12011-011-9256-x
Papa V, Bimonte V, Wannenes F, D’Abusco A, Fittipaldi S, Scandurra R, Politi L, Crescioli C, Lenzi A, Di Luigi L (2015) The endocrine disruptor cadmium alters human osteoblast-like Saos-2 cells homeostasis in vitro by alteration of Wnt/β-catenin pathway and activation of caspases. J Endocrinol Invest 38(12):1345–1356. https://doi.org/10.1007/s40618-015-0380-x
Hu K-H, Li W-X, Sun M-Y, Zhang S-B, Fan C-X, Wu Q, Zhu W, Xu X (2015) Cadmium induced apoptosis in MG63 cells by increasing ROS, activation of p38 MAPK and inhibition of ERK 1/2 pathways. Cell Physiol Biochem 36(2):642–654
Al-Ghafari A, Elmorsy E, Fikry E, Alrowaili M, Carter WG (2019) The heavy metals lead and cadmium are cytotoxic to human bone osteoblasts via induction of redox stress. PLoS ONE 14(11):e0225341. https://doi.org/10.1371/journal.pone.0225341
Wu L, Wei Q, Lv Y, Xue J, Zhang B, Sun Q, Xiao T, Huang R, Wang P, Dai X (2019) Wnt/β-Catenin pathway is involved in cadmium-induced inhibition of osteoblast differentiation of bone marrow mesenchymal stem cells. Int J Mol Sci 20(6):1519. https://doi.org/10.3390/ijms20061519
WHO (2017). https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Pope CA III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109(1):71–77. https://doi.org/10.1161/01.CIR.0000108927.80044.7F
Tellez-Plaza M, Jones MR, Dominguez-Lucas A, Guallar E, Navas-Acien A (2013) Cadmium exposure and clinical cardiovascular disease: a systematic review. Curr Atheroscler Rep 15(10):356. https://doi.org/10.1007/s11883-013-0356-2
Kukongviriyapan U, Apaijit K, Kukongviriyapan V (2016) Oxidative stress and cardiovascular dysfunction associated with cadmium exposure: beneficial effects of curcumin and tetrahydrocurcumin. Tohoku J Exp Med 239(1):25–38. https://doi.org/10.1620/tjem.239.25
Bagchi D, Vuchetich P, Bagchi M, Hassoun E, Tran M, Tang L, Stohs S (1997) Induction of oxidative stress by chronic administration of sodium dichromate [chromium VI] and cadmium chloride [cadmium II] to rats. Free Radical Biol Med 22(3):471–478. https://doi.org/10.1016/s0891-5849(96)00352-8
Liu F, Jan K-Y (2000) DNA damage in arsenite-and cadmium-treated bovine aortic endothelial cells. Free Radical Biol Med 28(1):55–63. https://doi.org/10.1016/s0891-5849(99)00196-3
Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24(4):378–399
Messner B, Knoflach M, Seubert A, Ritsch A, Pfaller K, Henderson B, Shen YH, Zeller I, Willeit J, Gn L (2009) Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscler Thromb Vasc Biol 29(9):1392–1398. https://doi.org/10.1161/ATVBAHA.109.190082
Knoflach M, Messner B, Shen YH, Frotschnig S, Liu G, Pfaller K, Wang X, Matosevic B, Willeit J, Kiechl S (2011) Non-toxic cadmium concentrations induce vascular inflammation and promote atherosclerosis. Circ J 75(10):2491–2495. https://doi.org/10.1253/circj.cj-11-0196
Myong J-P, Kim H-R, Jang T-W, Lee HE, Koo J-W (2014) Association between blood cadmium levels and 10-year coronary heart disease risk in the general Korean population: the Korean National Health and Nutrition Examination Survey 2008–2010. PLoS ONE 9(11):e111909
Barregard L, Sallsten G, Fagerberg B, Borné Y, Persson M, Hedblad B, Engström G (2016) Blood cadmium levels and incident cardiovascular events during follow-up in a population-based cohort of Swedish adults: the Malmö Diet and Cancer Study. Environ Health Perspect 124(5):594–600. https://doi.org/10.1289/ehp.1509735
Fagerberg B, Bergström G, Borén J, Barregard L (2012) Cadmium exposure is accompanied by increased prevalence and future growth of atherosclerotic plaques in 64-year-old women. J Intern Med 272(6):601–610. https://doi.org/10.1111/j.1365-2796.2012.02578.x
Fagerberg B, Kjelldahl J, Sallsten G, Barregard L, Forsgard N, Österberg K, Hultén LM, Bergström G (2016) Cadmium exposure as measured in blood in relation to macrophage density in symptomatic atherosclerotic plaques from human carotid artery. Atherosclerosis 249:209–214. https://doi.org/10.1016/j.atherosclerosis.2016.01.011
Howard DP, Van Lammeren GW, Rothwell PM, Redgrave JN, Moll FL, de Vries J-PP, De Kleijn DP, Den Ruijter HM, De Borst GJ, Pasterkamp G (2015) Symptomatic carotid atherosclerotic disease: correlations between plaque composition and ipsilateral stroke risk. Stroke 46(1):182–189
Liberda EN, Zuk AM, Tsuji LJ (2019) Complex contaminant mixtures and their associations with intima-media thickness. BMC Cardiovasc Disord 19(1):289. https://doi.org/10.1186/s12872-019-1246-5
Ilmiawati C, Reza M, Yanni M, Rusjdi DA (2020) Blood Cd levels and carotid intima-media thickness in young adults living in Padang, Indonesia. BMC Res Notes 13:1–7. https://doi.org/10.1186/s13104-020-05042-0
Hecht EM, Landy DC, Ahn S, Hlaing WM, Hennekens CH (2013) Hypothesis: cadmium explains, in part, why smoking increases the risk of cardiovascular disease. J Cardiovasc Pharmacol Ther 18(6):550–554. https://doi.org/10.1177/1074248413494815
Solenkova NV, Newman JD, Berger JS, Thurston G, Hochman JS, Lamas GA (2014) Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. Am Heart J 168(6):812–822. https://doi.org/10.1016/j.ahj.2014.07.007
Choi S, Kwon J, Kwon P, Lee C, Jang S-I (2020) Association between blood heavy metal levels and predicted 10-year risk for a first atherosclerosis cardiovascular disease in the general Korean population. Int J Environ Res Public Health 17(6):2134. https://doi.org/10.3390/ijerph17062134
Kolluru GK, Tamilarasan K, Priya SG, Durgha N, Chatterjee S (2006) Cadmium induced endothelial dysfunction: consequence of defective migratory pattern of endothelial cells in association with poor nitric oxide availability under cadmium challenge. Cell Biol Int 30(5):427–438
Everett CJ, Frithsen IL (2008) Association of urinary cadmium and myocardial infarction. Environ Res 106(2):284–286
Tellez-Plaza M, Navas-Acien A, Crainiceanu CM, Guallar E (2008) Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Environ Health Perspect 116(1):51–56. https://doi.org/10.1289/ehp.10764
Tellez-Plaza M, Navas-Acien A, Crainiceanu CM, Sharrett AR, Guallar E (2010) Cadmium and peripheral arterial disease: gender differences in the 1999–2004 US National Health and Nutrition Examination Survey. Am J Epidemiol 172(6):671–681. https://doi.org/10.1093/aje/kwq172
Peters JL, Perlstein TS, Perry MJ, McNeely E, Weuve J (2010) Cadmium exposure in association with history of stroke and heart failure. Environ Res 110(2):199–206. https://doi.org/10.1016/j.envres.2009.12.004
Li H, Fagerberg B, Sallsten G, Borné Y, Hedblad B, Engström G, Barregard L, Andersson EM (2019) Smoking-induced risk of future cardiovascular disease is partly mediated by cadmium in tobacco: Malmö Diet and Cancer Cohort Study. Environ Health 18(1):56. https://doi.org/10.1186/s12940-019-0495-1
Santos-Gallego CG, Jialal I (2016) Cadmium and atherosclerosis: Heavy metal or singing the blues? Atherosclerosis 249:230–232. https://doi.org/10.1016/j.atherosclerosis.2016.01.041
Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118(2):182–190. https://doi.org/10.1289/ehp.0901234
Yuan Z, Luo T, Liu X, Hua H, Zhuang Y, Zhang X, Zhang L, Zhang Y, Xu W, Ren J (2019) Tracing anthropogenic cadmium emissions: from sources to pollution. Sci Total Environ 676:87–96. https://doi.org/10.1016/j.scitotenv.2019.04.250
Agency EM (2013) EMA/491185/2013 Committee for Medicinal Products for Human Use (CHMP) Giotrif—CHMP assessment report International non-proprietary name: afatinib Procedure No. EMEA/H/C/002280. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002280/WC500152394.pdf
Schaefer HR, Dennis S, Fitzpatrick S (2020) Cadmium: Mitigation strategies to reduce dietary exposure. J Food Sci 85(2):260–267. https://doi.org/10.1111/1750-3841.14997
Kusznierewicz B, Bączek-Kwinta R, Bartoszek A, Piekarska A, Huk A, Manikowska A, Antonkiewicz J, Namieśnik J, Konieczka P (2012) The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environ Toxicol Chem 31(11):2482–2489. https://doi.org/10.1002/etc.1977
Mostofa MG, Rahman M, Ansary M, Uddin M, Fujita M, Tran L-SP (2019) Interactive effects of salicylic acid and nitric oxide in enhancing rice tolerance to cadmium stress. Int J Mol Sci 20(22):5798. https://doi.org/10.3390/ijms20225798
Habib R, Wahdan SA, Gad AM, Azab SS (2019) Infliximab abrogates cadmium-induced testicular damage and spermiotoxicity via enhancement of steroidogenesis and suppression of inflammation and apoptosis mediators. Ecotoxicol Environ Saf 182:109398. https://doi.org/10.1016/j.ecoenv.2019.109398
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Authors declare no conflicts of interest.
Research involving human participants and/or animals
This article does not contain any studies with human participants and/or animals performed by any of the authors.
Informed consent
For this type of study, formal consent is not required.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bimonte, V.M., Besharat, Z.M., Antonioni, A. et al. The endocrine disruptor cadmium: a new player in the pathophysiology of metabolic diseases. J Endocrinol Invest 44, 1363–1377 (2021). https://doi.org/10.1007/s40618-021-01502-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40618-021-01502-x
Keywords
- Cadmium
- Endocrine disruptors
- Metabolic chronic diseases
- Obesity
- Bone