Skip to main content
Log in

Chronic stress inhibits hypothalamus–pituitary–thyroid axis and brown adipose tissue responses to acute cold exposure in male rats

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Cold exposure activates the hypothalamus–pituitary–thyroid (HPT) axis, response blunted by previous acute stress or corticosterone administration. Chronic stressors can decrease serum T3 concentration, and thyrotropin-releasing hormone (Trh) expression in the paraventricular nucleus (PVN), but impact on the response to cold is unknown; this was studied in rats submitted to daily repeated restraint (rRes) that causes habituation of hypothalamus–pituitary–adrenal (HPA) axis response, or to chronic variable stress (CVS) that causes sensitization and hyperreactivity.

Methods

Wistar male adult rats were submitted to rRes 30 min/day, or to CVS twice a day, for 15 days. On day 16, rats were exposed 1 h to either 5 or 21 °C. Parameters of HPT and HPA axes activity and of brown adipose tissue (BAT) cold response were measured; gene expression in PVN and BAT, by RT-PCR; serum hormone concentration by radioimmunoassay or ELISA.

Results

Compared to naïve animals, Crh and corticosterone concentrations were attenuated at the end of rRes, but increased at the end of CVS treatments. Cold exposure increased mRNA levels of Crh, Trh, and serum concentration of thyrotropin in naïve, but not in rRes or CVS rats; corticosterone increased in all groups. Cold induced expression of thermogenic genes in BAT (Dio2 and Ucp1) in naïve but not in stressed rats; Adrb3 expression was differentially regulated.

Conclusion

Both types of chronic stress blunted HPT and BAT responses to cold. Long-term stress effects on noradrenergic and/or hormonal signaling are likely responsible for HPT dysfunction and not the type of chronic stressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropin

Adrb3 :

β3 Adrenergic receptor gene

BAT:

Brown adipose tissue

BWg:

Body weight gain

cAMP:

Cyclic adenosine monophosphate

Cort:

Corticosterone

Cpf:

Control pair-fed

Crh :

Corticotropin-releasing hormone gene

CRH:

Corticotropin-releasing hormone peptide

CVS:

Chronic variable stress

Dio2 :

Deiodinase 2 gene

DIO2:

Deiodinase 2

EPM:

Elevated plus maze

Gr:

Glucocorticoid receptor gene (Nr3c1: nuclear receptor subfamily 3 group C member gene)

HPA:

Hypothalamus–pituitary–adrenal axis

HPT:

Hypothalamus–pituitary–thyroid axis

N:

Naïve

OFT:

Open field test

pCREB:

Phosphorylated cAMP response element-binding protein

PKA:

Protein kinase A

PKAc:

Catalytic subunit of PKA

PVN:

Paraventricular nucleus of the hypothalamus

rRes:

Repeated restraint stress

RT:

Room temperature

RT-PCR:

Reverse transcription polymerase chain reaction

SAS:

Sympathoadrenal system

T3:

3, 3′, 5-Triiodo-l-thyronine

T4:

Thyroxine

Trh :

Thyrotropin-releasing hormone gene

TRH:

Thyrotropin-releasing hormone peptide

TSH:

Thyrotropin

Ucp1 :

Uncoupling protein 1 gene

UCP-1:

Uncoupling protein 1

WAT:

White adipose tissue

References

  1. Morrison SF (2018) Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering. Handb Clin Neurol 156:281–303. https://doi.org/10.1016/B978-0-444-63912-7.00017-5

    Article  PubMed  Google Scholar 

  2. Nedergaard J, Cannon B (2018) Brown adipose tissue as a heat-producing thermoeffector. Handb Clin Neurol 156:137–152. https://doi.org/10.1016/B978-0-444-63912-7.00009

    Article  PubMed  Google Scholar 

  3. Rondeel JM, de Greef WJ, Hop WC, Rowland DL, Visser TJ (1991) Effect of cold exposure on the hypothalamic release of thyrotropin-releasing hormone and catecholamines. Neuroendocrinology 54:477–481. https://doi.org/10.1159/000125940

    Article  CAS  PubMed  Google Scholar 

  4. Hefco E, Krulich L, Illner P, Larsen PR (1975) Effect of acute exposure to cold on the activity of the hypothalamic-pituitary-thyroid system. Endocrinology 97:1185–1195. https://doi.org/10.1210/endo-97-5-1185

    Article  CAS  PubMed  Google Scholar 

  5. Uribe RM, Redondo JL, Charli JL, Joseph-Bravo P (1993) Suckling and cold stress rapidly and transiently increase TRH mRNA in the paraventricular nucleus. Neuroendocrinology 58:140–145. https://doi.org/10.1159/000126523

    Article  CAS  PubMed  Google Scholar 

  6. Perello M, Stuart RC, Vaslet CA, Nillni EA (2007) Cold exposure increases the biosynthesis and proteolytic processing of prothyrotropin-releasing hormone in the hypothalamic paraventricular nucleus via beta-adrenoreceptors. Endocrinology 148:4952–4964. https://doi.org/10.1210/en.2007-0522

    Article  CAS  PubMed  Google Scholar 

  7. Bianco AC, Dumitrescu A, Gereben B et al (2019) Paradigms of dynamic control of thyroid hormone signaling. Endocr Rev 40:1000–1047. https://doi.org/10.1210/er.2018-00275

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martinez-deMena R, Anedda A, Cadenas S, Obregon MJ (2015) TSH effects on thermogenesis in rat brown adipocytes. Mol Cell Endocrinol 404:151–158. https://doi.org/10.1016/j.mce.2015.01.028

    Article  CAS  PubMed  Google Scholar 

  9. Herman JP, McKlveen JM et al (2016) Regulation of the hypothalamic-pituitary-adrenocortical stress response. Comp Physiol 6:603–621. https://doi.org/10.1002/cphy.c150015

    Article  Google Scholar 

  10. Fukuhara K, Kvetnansky R, Cizza G, Pacak K, Ohara H, Goldstein DS, Kopin IJ (1996) Interrelations between sympathoadrenal system and hypothalamo-pituitary-adrenocortical/thyroid systems in rats exposed to cold tress. J Neuroendocrinol 8:533–541. https://doi.org/10.1046/j.1365-2826.1996.04877

    Article  CAS  PubMed  Google Scholar 

  11. Joseph-Bravo P, Jaimes-Hoy L, Charli JL (2015) Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol 224:139–159. https://doi.org/10.1530/JOE-14-0593

    Article  CAS  Google Scholar 

  12. Joseph-Bravo P, Jaimes-Hoy L, Charli JL (2016) Advances in TRH signaling. Rev Endocr Metab Disord 17:545–558. https://doi.org/10.1007/s11154-016-9375-y

    Article  CAS  PubMed  Google Scholar 

  13. Osterlund C, Spencer R (2011) Corticosterone pretreatment suppresser stress-induced hypothalamic-pituitary-adrenal axis activity via multiple actions that vary with time, site of action and de novo protein synthesis. J Endocrinol 208:311–322. https://doi.org/10.1530/JOE-10-0413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sotelo-Rivera I, Jaimes-Hoy L, Cote-Vélez A, Espinoza-Ayala C, Charli JL, Joseph-Bravo P (2014) An acute injection of corticosterone increases thyrotropin-releasing hormone expression in the paraventricular nucleus of the hypothalamus but interferes with the rapid hypothalamus pituitary thyroid axis response to cold in male rats. J Endocrinol 26:861–869. https://doi.org/10.1111/jne.12224

    Article  CAS  Google Scholar 

  15. Sotelo-Rivera I, Cote-Vélez A, Uribe RM, Charli JL, Joseph-Bravo P (2017) Glucocorticoids curtail stimuli-induced CREB phosphorylation in TRH neurons trough interaction of the glucocorticoid receptor with the catalytic subunit of protein kinase A. Endocrine 55:861–871. https://doi.org/10.1007/s12020-016-1223-z

    Article  CAS  PubMed  Google Scholar 

  16. Kvetnansky R, Sabban EL, Palkovits M (2009) Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 89:535–606. https://doi.org/10.1152/physrev.00042.2006

    Article  CAS  PubMed  Google Scholar 

  17. Herman JP, Tasker JG (2016) Paraventricular hypothalamic mechanisms of chronic stress adaptation. Front Endocrinol 7:137. https://doi.org/10.3389/fendo.2016.00137

    Article  Google Scholar 

  18. Radley JJ, Sawchenko PE (2015) Evidence for involvement of a limbic paraventricular hypothalamic inhibitory network in hypothalamic-pituitary-adrenal axis adaptations to repeated stress. J Comp Neurol 523:2769–2787. https://doi.org/10.1002/cne.23815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gutiérrez-Mariscal M, Sánchez E, García-Vázquez A, Rebolledo-Solleiro D, Charli JL, Joseph-Bravo P (2012) Acute response of hypophysiotropic thyrotropin releasing hormone neurons and thyrotropin release to behavioral paradigms producing varying intensities of stress and physical activity. Regul Pep 179:61–70. https://doi.org/10.1016/j.regpep.2012.08.010

    Article  CAS  Google Scholar 

  20. Uribe RM, Jaimes-hoy L, Ramírez-Martínez C, García-Vazquez A, Romero F, Cisneros M, Cote-Vélez A, Charli JL, Joseph-Bravo P (2014) Voluntary exercise adapts the hypothalamus-pituitary-thyroid axis in male rats. Endocrinology 155:2020–2030. https://doi.org/10.1210/en.2013-1724

    Article  CAS  PubMed  Google Scholar 

  21. Armario A, García-Márquez C, Jolin T (1987) The effects of chronic intermittent stress on basal and acute stress levels of TSH and GH, and their response to hypothalamic regulatory factors in the rat. Psychoneuroendocrinology 12:399–406. https://doi.org/10.1016/0306-4530(87)90069-2

    Article  CAS  PubMed  Google Scholar 

  22. Parra-Montes de Oca MA, Gutiérrez-Mariscal M, Salmerón-Jiménez MF, Jaimes-Hoy L, Charli JL, Joseph-Bravo P (2019) Voluntary exercise-induced activation of the thyroid axis and reduction of white fat depots is attenuated by chronic stress in a sex dimorphic pattern in adult rats. Front Endocrinol 10:418. https://doi.org/10.3389/fendo.2019.00418

    Article  Google Scholar 

  23. Fekete C, Lechan RM (2014) Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev 35:159–194. https://doi.org/10.1210/er.2013-1087

    Article  CAS  PubMed  Google Scholar 

  24. Brudzynski SM (2013) Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Curr Opin Neurobiol 23:310–317. https://doi.org/10.1016/j.conb.2013.01.014

    Article  CAS  PubMed  Google Scholar 

  25. Harris RBS, Jun Z, Youngblood BD, Rybkin I, Smagin GN, Ryan DH (1998) Effect of repeated stress on body weight and body composition of rats fed low and high-fat diets. Am J Physiol 275:R1928–1938. https://doi.org/10.1152/ajpregu.1998.275.6.R1928

    Article  CAS  PubMed  Google Scholar 

  26. Flack JN, Jankord R, Solomon MB, Krause EG, Herman JP (2011) Opposing effects of chronic stress and weight restriction on cardiovascular, neuroendocrine and metabolic function. Physiol Behav 104:228–234. https://doi.org/10.1016/j.physbeh.2011.03.002

    Article  CAS  Google Scholar 

  27. Ma XM, Lightman SL, Aguilera G (1999) Vasopressin and corticotropin-releasing hormone gene responses to novel stress in rats adapted to repeated restraint. Endocrinology 140:3623–3632. https://doi.org/10.1210/endo.140.8.6943

    Article  CAS  PubMed  Google Scholar 

  28. Lowrance SA, Ionadi A, Douglas MEX, Johnson JD (2016) Sympathetic nervous system contributes to enhanced corticosterone levels following chronic stress. Psychoneuroendocrinology 68:163–170. https://doi.org/10.1016/j.psyneuen.2016.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Di S, Malcher-Lopes R, Halmos KC, Tasker JG (2003) Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci 23:4850–4857. https://doi.org/10.1523/JNEUROSCI.23-12-04850.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Farkas E, Varga E, Kovács B, Szilvásy-Szabó A, Cote-Vélez A, Péterfi Z, Matziari M, Tóth M, Zelena D, Mezriczky Z, Kádár A, Kővári D, Watanabe M, Kano M, Mackie K, Rózsa B, Ruska Y, Tóth B, Máté Z, Erdélyi F, Szabó G, Gereben B, Lechan RM, Charli JL, Joseph-Bravo P, Fekete C (2020) A glial-neuronal circuit in the median eminence regulates thyrotropin-releasing hormone-release via the endocannabinoid system. iScience 23:100921. https://doi.org/10.1016/j.isci.2020.100921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. John CD, Christian HC, Morris JF, Flower RJ, Solito E, Buckingham JC (2003) Kinase-dependent regulation of the secretion of thyrotrophin and luteinizing hormone by glucocorticoids and annexin 1 peptides. J Neuroendocrinol 15:946–957. https://doi.org/10.1046/j.1365-2826.2003.01081

    Article  CAS  PubMed  Google Scholar 

  32. Cavalieri RR, Castle JN, McMahon FA (1984) Effects of dexamethasone on kinetics and distribution of triiodothyronine in the rat. Endocrinology 114:215–221. https://doi.org/10.1210/endo-114-1-215

    Article  CAS  PubMed  Google Scholar 

  33. Hotta H, Onda A, Suzuki H, Milliken P, Sridhar A (2017) Modulation of calcitonin, parathyroid hormone, and thyroid hormone secretion by electrical stimulation of sympathetic and parasympathetic nerves in anesthetized rats. Front Neurosci 11:375. https://doi.org/10.3389/fnins.2017.00375

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oka T (2018) Stress-induced hyperthermia and hypothermia. Handb Clin Neurol 157:599–621. https://doi.org/10.1016/B978-0-444-64074-1.00035-5

    Article  PubMed  Google Scholar 

  35. Martinez-de Mena R, Calvo RM, Garcia L, Obregon MJ (2016) Effect of glucocorticoids on the activity, expression and proximal promoter of type II deiodinase in rat brown adipocytes. Mol Cel Endocrinol 428:58–67. https://doi.org/10.1016/j.mce.2016.03.021

    Article  CAS  Google Scholar 

  36. Soumano K, Desbiens S, Rabelo R, Bakopanos E, Camirand E, Silva JE (2000) Glucocorticoids inhibit the transcriptional response of the uncoupling protein-1 gene to adrenergic stimulation in a brown adipose cell line. Mol Cel Endocrinol 165:7–15. https://doi.org/10.1016/s0303-7207(00)00276-8

    Article  CAS  Google Scholar 

  37. Ramage LE, Akyol M, Fletcher AM et al (2016) Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab 24:130–141. https://doi.org/10.1016/j.cmet.2016.06.0141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Valle A, García-Palmer FJ, Oliver J, Roca P (2007) Sex differences in brown adipose tissue thermogenic features during caloric restriction. Cell Physiol Biochem 19:195–204. https://doi.org/10.1159/000099207

    Article  CAS  PubMed  Google Scholar 

  39. Laukova M, TillingerA Novakova M, Krizanova O, Kvetnansky R, Myslivcek J (2014) Repeated immobilization stress increases expression of beta3 adrenoreceptor in the left ventricle and atrium of the rat heart. Stress Health 30:301–309. https://doi.org/10.1002/smi.2515

    Article  PubMed  Google Scholar 

  40. Bengtsson T, Cannon B, Nedergaard J (2000) Differential adrenergic regulation of the gene expression of the beta-adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes. Biochem J 347:643–651. https://doi.org/10.1042/0264-6021:3470643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ong FJ, Ahmed BA, Oreskovich SM et al (2018) Recent advances in the detection of brown adipose tissue in adult humans: a review. Clin Sci (Lond) 132:1039–1054. https://doi.org/10.1042/CS20170276

    Article  CAS  Google Scholar 

  42. Santhanam P, Ahima RS, Mammen JS, Giovanella L, Treglia G (2018) Brown adipose tissue (BAT) detection by 18F-FDG PET and thyroid hormone level(s)-a systematic review. Endocrine 62:496–500. https://doi.org/10.1007/s12020-018-1698-x

    Article  CAS  PubMed  Google Scholar 

  43. Heinen CA, Zhang Z, Klieverik LP et al (2018) Effects of intravenous thyrotropin-releasing hormone on 18F-fluorodeoxyglucose uptake in human brown adipose tissue: a randomized controlled trial. Eur J Endocrinol 179:31–38. https://doi.org/10.1530/EJE-17-0966

    Article  CAS  PubMed  Google Scholar 

  44. Leppäluoto J, Pääkkönen T, Korhonen I, Hassi J (2005) Pituitary and autonomic responses to cold exposures in man. Acta Physiol Scand 184:255–264. https://doi.org/10.1111/j.1365-201X.2005.01464.x

    Article  PubMed  Google Scholar 

  45. Fischer S, Ehlert U (2018) Hypothalamic-pituitary-thyroid (HPT) axis functioning in anxiety disorders. Syst Rev Depress Anxiety 35:98–110. https://doi.org/10.1002/da.22692

    Article  CAS  Google Scholar 

  46. Johansson G, Laakso ML, Karonen SL, Peder M (1987) Examination stress affects plasma levels of TSH and thyroid hormones differently in females and males. Psychosom Med 49:390–396. https://doi.org/10.1097/00006842-198707000-00008

    Article  CAS  PubMed  Google Scholar 

  47. Vogel WV, Valdés Olmos RA, Tijs TJ, Gillies MF, van Elswijk G, Vogt J (2012) Intervention to lower anxiety of 18F-FDG PET/CT patients by use of audiovisual imagery during the uptake phase before imaging. J Nucl Med Technol 40:92–98. https://doi.org/10.2967/jnmt.111.097964

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of M. Gutiérrez-Mariscal, M. Cisneros, F. Romero, R. Rodríguez Bahena, S. Ainsworth and E. López Bustos.

Funding

The present study was supported by UNAM-DGAPA (Grant no. IN213419), CONACYT (Schollarships for graduate studies), CONACYT (Grant no. 284883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Joseph-Bravo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Maintenance and work with animals followed the Guide for the care and use of laboratory animals (8th ed.), as well as the Mexican norm NOM-062-ZOO-1999. These experiments were approved by the Bioethics Committee of the Institute, approval No. 273 and 318.

Informed consent

For these animal studies consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 235 kb)

Supplementary file2 (PDF 849 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Campos, A., Gutiérrez-Mata, A., Charli, JL. et al. Chronic stress inhibits hypothalamus–pituitary–thyroid axis and brown adipose tissue responses to acute cold exposure in male rats. J Endocrinol Invest 44, 713–723 (2021). https://doi.org/10.1007/s40618-020-01328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01328-z

Keywords

Navigation