Skip to main content
Log in

Endogenous transient doping: physical exercise acutely increases testosterone levels—results from a meta-analysis

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Although endogenous testosterone levels are demonstrated to be affected by both acute exercise and resistance training, the dynamic regulation of androgen production after physical activity is still a matter of debate. This meta-analysis was designed to assess whether physical exercise acutely affects testosterone levels in men.

Methods

The literature search was conducted to identify longitudinal trials evaluating the acute change of both total testosterone (TT) and free testosterone (fT) after physical activity in adult men. Sensitivity analyses were performed considering the sample collected (blood or saliva), the intensity of the physical exercise and the interval between the end of the exercise and the sample collection.

Results

Forty-eight studies were included in the analysis, accounting for 126 trials. A total of 569 patients were enrolled (mean age 29.7 ± 13.1 years). The physical activity increased acutely TT (standardized mean difference 0.74, 95%CI: 0.56, 0.91 nmol/L), considering both serum and saliva samples (p < 0.001). Testosterone increased after moderate (p < 0.001) and high-intensity (p < 0.001) exercises, but not after mild physical activity (p = 0.19). Moreover, the testosterone increase was evident when measured immediately at the end of the exercise and within 30 min (p < 0.001), but not after 30 min (p = 0.930). Similar significant results were obtained considering fT, while SHBG did not change after physical activity (p = 0.090).

Conclusion

The comprehensive evaluation of the acute physical activity effect on testosterone levels identified a clear increase after exercise, irrespective of the sample collected. The main determinant of this fluctuation was the exercise intensity, with a mechanism that seems to be mostly SHBG independent. In particular, moderate/intense physical activity resulted able to increase endogenous androgenic production, albeit acutely and transitory.

Trial registration number

PROSPERO registration ID: 157348

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Storer TW, Magliano L, Woodhouse L, Lee ML, Dzekov C, Dzekov J, Casaburi R, Bhasin S (2003) Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J Clin Endocrinol Metab 88(4):1478–1485. https://doi.org/10.1210/jc.2002-021231

    Article  CAS  PubMed  Google Scholar 

  2. Gleason ED, Fuxjager MJ, Oyegbile TO, Marler CA (2009) Testosterone release and social context: when it occurs and why. Front Neuroendocrinol 30(4):460–469. https://doi.org/10.1016/j.yfrne.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  3. Hermans EJ, Ramsey NF, van Honk J (2008) Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol Psychiat 63(3):263–270. https://doi.org/10.1016/j.biopsych.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  4. Buttner A, Thieme D (2010) Side effects of anabolic androgenic steroids: pathological findings and structure–activity relationships. Handb Exp Pharmacol 195:459–484. https://doi.org/10.1007/978-3-540-79088-4_19

    Article  CAS  Google Scholar 

  5. van Amsterdam J, Opperhuizen A, Hartgens F (2010) Adverse health effects of anabolic-androgenic steroids. Regul Toxicol Pharmacol 57(1):117–123. https://doi.org/10.1016/j.yrtph.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  6. Wood RI, Stanton SJ (2012) Testosterone and sport: current perspectives. Horm Behav 61(1):147–155. https://doi.org/10.1016/j.yhbeh.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  7. Lac G, Maso F (2004) Biological markers for the follow-up of athletes throughout the training season. Pathol Biol (Paris) 52(1):43–49. https://doi.org/10.1016/s0369-8114(03)00049-x

    Article  CAS  Google Scholar 

  8. Maso F, Lac G, Filaire E, Michaux O, Robert A (2004) Salivary testosterone and cortisol in rugby players: correlation with psychological overtraining items. Br J Sports Med 38(3):260–263. https://doi.org/10.1136/bjsm.2002.000254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beaven CM, Cook CJ, Gill ND (2008) Significant strength gains observed in rugby players after specific resistance exercise protocols based on individual salivary testosterone responses. J Strength Cond Res 22(2):419–425. https://doi.org/10.1519/JSC.0b013e31816357d4

    Article  PubMed  Google Scholar 

  10. Hackney AC (2001) Endurance exercise training and reproductive endocrine dysfunction in men: alterations in the hypothalamic-pituitary-testicular axis. Curr Pharm Des 7(4):261–273. https://doi.org/10.2174/1381612013398103

    Article  CAS  PubMed  Google Scholar 

  11. Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med (Auckland, NZ) 35(4):339–361. https://doi.org/10.2165/00007256-200535040-00004

    Article  Google Scholar 

  12. Enea C, Boisseau N, Ottavy M, Mulliez J, Millet C, Ingrand I, Diaz V, Dugue B (2009) Effects of menstrual cycle, oral contraception, and training on exercise-induced changes in circulating DHEA-sulphate and testosterone in young women. Eur J Appl Physiol 106(3):365–373. https://doi.org/10.1007/s00421-009-1017-6

    Article  CAS  PubMed  Google Scholar 

  13. O'Leary CB, Hackney AC (2014) Acute and chronic effects of resistance exercise on the testosterone and cortisol responses in obese males: a systematic review. Physiol Res 63(6):693–704

    CAS  PubMed  Google Scholar 

  14. Ross R, Rissanen J, Pedwell H, Clifford J, Shragge P (1996) Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol (Bethesda, Md: 1985) 81(6):2445–2455. https://doi.org/10.1152/jappl.1996.81.6.2445

    Article  CAS  Google Scholar 

  15. Hayes LD, Grace FM, Baker JS, Sculthorpe N (2015) Exercise-induced responses in salivary testosterone, cortisol, and their ratios in men: a meta-analysis. Sports Med (Auckland, NZ) 45(5):713–726. https://doi.org/10.1007/s40279-015-0306-y

    Article  Google Scholar 

  16. Corona G, Rastrelli G, Morelli A, Sarchielli E, Cipriani S, Vignozzi L, Maggi M (2019) Treatment of functional hypogonadism besides pharmacological substitution. World J Men's Health. https://doi.org/10.5534/wjmh.190061

    Article  Google Scholar 

  17. Williams TD, Tolusso DV, Fedewa MV, Esco MR (2017) Comparison of periodized and non-periodized resistance training on maximal strength: a meta-analysis. Sports Med (Auckland, NZ) 47(10):2083–2100. https://doi.org/10.1007/s40279-017-0734-y

    Article  Google Scholar 

  18. Thompson SW, Rogerson D, Ruddock A, Barnes A (2019) The effectiveness of two methods of prescribing load on maximal strength development: a systematic review. Sports Med. https://doi.org/10.1007/s40279-019-01241-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Souza e Silva CG, Araujo CG (2015) Sex-specific equations to estimate maximum oxygen uptake in cycle ergometry. Arq Bras Cardiol 105(4):381–389. https://doi.org/10.5935/abc.20150089

    Article  CAS  PubMed  Google Scholar 

  20. Del Giudice M, Bonafiglia JT, Islam H, Preobrazenski N, Amato A, Gurd BJ (2020) Investigating the reproducibility of maximal oxygen uptake responses to high-intensity interval training. J Sci Med Sport 23(1):94–99. https://doi.org/10.1016/j.jsams.2019.09.007

    Article  PubMed  Google Scholar 

  21. Santos M, Rodriguez-Gonzalez GL, Ibanez C, Vega CC, Nathanielsz PW, Zambrano E (2015) Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats. Am J Physiol Regul Integr Comp Physiol 308(3):R219–225. https://doi.org/10.1152/ajpregu.00398.2014

    Article  CAS  PubMed  Google Scholar 

  22. Parastesh M, Heidarianpour A, Sadegh M (2019) Investigating the effects of endurance, resistance and combined training on reproductive hormones and sperm parameters of streptozotocin-nicotinamide diabetic male rats. J Diabetes Metab Disord 18(2):273–279. https://doi.org/10.1007/s40200-018-0380-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matos B, Howl J, Ferreira R, Fardilha M (2019) Exploring the effect of exercise training on testicular function. Eur J Appl Physiol 119(1):1–8. https://doi.org/10.1007/s00421-018-3989-6

    Article  CAS  PubMed  Google Scholar 

  24. Tremblay MS, Copeland JL, Van Helder W (2005) Influence of exercise duration on post-exercise steroid hormone responses in trained males. Eur J Appl Physiol 94(5–6):505–513. https://doi.org/10.1007/s00421-005-1380-x

    Article  CAS  PubMed  Google Scholar 

  25. Hackney AC (2008) Effects of endurance exercise on the reproductive system of men: the "exercise-hypogonadal male condition". J Endocrinol Invest 31(10):932–938. https://doi.org/10.1007/bf03346444

    Article  CAS  PubMed  Google Scholar 

  26. Cano Sokoloff N, Misra M, Ackerman KE (2016) Exercise, training, and the hypothalamic-pituitary-gonadal axis in men and women. Front Horm Res 47:27–43. https://doi.org/10.1159/000445154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Manna I, Jana K, Samanta PK (2004) Effect of different intensities of swimming exercise on testicular oxidative stress and reproductive dysfunction in mature male albino Wistar rats. Indian J Exp Biol 42(8):816–822

    CAS  PubMed  Google Scholar 

  28. Manna I, Jana K, Samanta PK (2003) Effect of intensive exercise-induced testicular gametogenic and steroidogenic disorders in mature male Wistar strain rats: a correlative approach to oxidative stress. Acta Physiol Scand 178(1):33–40. https://doi.org/10.1046/j.1365-201X.2003.01095.x

    Article  CAS  PubMed  Google Scholar 

  29. Jana K, Samanta PK, Manna I, Ghosh P, Singh N, Khetan RP, Ray BR (2008) Protective effect of sodium selenite and zinc sulfate on intensive swimming-induced testicular gamatogenic and steroidogenic disorders in mature male rats. Appl Physiol Nutr Metab 33(5):903–914. https://doi.org/10.1139/h08-065

    Article  CAS  PubMed  Google Scholar 

  30. Wang JM, Gong TY, Zhao ZJ (2019) Effects of exercise on sex hormones and expression of relevant genes in the hypothalamus in obese mice. J Biol Regul Homeost Agents 33(2):517–523

    CAS  PubMed  Google Scholar 

  31. Safarinejad MR, Azma K, Kolahi AA (2009) The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamus-pituitary-testis axis, and semen quality: a randomized controlled study. J Endocrinol 200(3):259–271. https://doi.org/10.1677/joe-08-0477

    Article  CAS  PubMed  Google Scholar 

  32. Koltun KJ, Williams NIw, Scheid JL, De Souza MJ (2019) Discriminating hypothalamic oligomenorrhea/amenorrhea from hyperandrogenic oligomenorrhea/amenorrhea in exercising women. Appl Physiol Nutr Metab. https://doi.org/10.1139/apnm-2019-0640

    Article  PubMed  Google Scholar 

  33. Lania A, Gianotti L, Gagliardi I, Bondanelli M, Vena W, Ambrosio MR (2019) Functional hypothalamic and drug-induced amenorrhea: an overview. J Endocrinol Invest 42(9):1001–1010. https://doi.org/10.1007/s40618-019-01013-w

    Article  CAS  PubMed  Google Scholar 

  34. Grandys M, Majerczak J, Duda K, Zapart-Bukowska J, Kulpa J, Zoladz JA (2009) Endurance training of moderate intensity increases testosterone concentration in young, healthy men. Int J Sports Med 30(7):489–495. https://doi.org/10.1055/s-0029-1202340

    Article  CAS  PubMed  Google Scholar 

  35. Vaamonde D, Da Silva-Grigoletto ME, Garcia-Manso JM, Barrera N, Vaamonde-Lemos R (2012) Physically active men show better semen parameters and hormone values than sedentary men. Eur J Appl Physiol 112(9):3267–3273. https://doi.org/10.1007/s00421-011-2304-6

    Article  CAS  PubMed  Google Scholar 

  36. Gaskins AJ, Mendiola J, Afeiche M, Jorgensen N, Swan SH, Chavarro JE (2015) Physical activity and television watching in relation to semen quality in young men. Br J Sports Med 49(4):265–270. https://doi.org/10.1136/bjsports-2012-091644

    Article  PubMed  Google Scholar 

  37. Priskorn L, Jensen TK, Bang AK, Nordkap L, Joensen UN, Lassen TH, Olesen IA, Swan SH, Skakkebaek NE, Jorgensen N (2016) Is sedentary lifestyle associated with testicular function? a cross-sectional study of 1,210 men. Am J Epidemiol 184(4):284–294. https://doi.org/10.1093/aje/kwv338

    Article  PubMed  Google Scholar 

  38. Sato K, Iemitsu M, Aizawa K, Mesaki N, Fujita S (2011) Increased muscular dehydroepiandrosterone levels are associated with improved hyperglycemia in obese rats. Am J Physiol Endocrinol Metab 301(2):E274–280. https://doi.org/10.1152/ajpendo.00564.2010

    Article  CAS  PubMed  Google Scholar 

  39. Aizawa K, Iemitsu M, Maeda S, Mesaki N, Ushida T, Akimoto T (2011) Endurance exercise training enhances local sex steroidogenesis in skeletal muscle. Med Sci Sports Exerc 43(11):2072–2080. https://doi.org/10.1249/MSS.0b013e31821e9d74

    Article  CAS  PubMed  Google Scholar 

  40. Aizawa K, Iemitsu M, Otsuki T, Maeda S, Miyauchi T, Mesaki N (2008) Sex differences in steroidogenesis in skeletal muscle following a single bout of exercise in rats. J Appl Physiol (Bethesda, Md: 1985) 104(1):67–74. https://doi.org/10.1152/japplphysiol.00558.2007

    Article  CAS  Google Scholar 

  41. Rey F, Chiodoni G, Gomez F, Felber JP (1988) Interpretation of the discrepancy observed between plasma free and salivary testosterone levels in man. Steroids 52(4):371–372. https://doi.org/10.1016/0039-128x(88)90152-3

    Article  CAS  PubMed  Google Scholar 

  42. Rilling JK, Worthman CM, Campbell BC, Stallings JF, Mbizva M (1996) Ratios of plasma and salivary testosterone throughout puberty: production versus bioavailability. Steroids 61(6):374–378. https://doi.org/10.1016/0039-128x(96)00043-8

    Article  CAS  PubMed  Google Scholar 

  43. Adebero T, McKinlay BJ, Theocharidis A, Root Z, Josse AR, Klentrou P, Falk B (2019) Salivary and serum concentrations of cortisol and testosterone at rest and in response to intense exercise in boys versus men. Pediatr Exerc Sci. https://doi.org/10.1123/pes.2019-0091

    Article  PubMed  Google Scholar 

  44. Lood Y, Aardal-Eriksson E, Webe C, Ahlner J, Ekman B, Wahlberg J (2018) Relationship between testosterone in serum, saliva and urine during treatment with intramuscular testosterone undecanoate in gender dysphoria and male hypogonadism. Andrology 6(1):86–93. https://doi.org/10.1111/andr.12435

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Shen CL, Dyson MT, Eimerl S, Orly J, Hutson JC, Stocco DM (2005) Cyclooxygenase-2 regulation of the age-related decline in testosterone biosynthesis. Endocrinology 146(10):4202–4208. https://doi.org/10.1210/en.2005-0298

    Article  CAS  PubMed  Google Scholar 

  46. Luo L, Chen H, Trush MA, Show MD, Anway MD, Zirkin BR (2006) Aging and the brown Norway rat leydig cell antioxidant defense system. J Androl 27(2):240–247. https://doi.org/10.2164/jandrol.05075

    Article  CAS  PubMed  Google Scholar 

  47. Zmuda JM, Thompson PD, Winters SJ (1996) Exercise increases serum testosterone and sex hormone-binding globulin levels in older men. Metab Clin Exp 45(8):935–939. https://doi.org/10.1016/s0026-0495(96)90258-9

    Article  CAS  PubMed  Google Scholar 

  48. Maleki BH, Tartibian B (2017) High-intensity exercise training for improving reproductive function in infertile patients: a randomized controlled trial. J Obstet Gynaecol Cancer 39(7):545–558. https://doi.org/10.1016/j.jogc.2017.03.097

    Article  Google Scholar 

  49. Chigurupati S, Son TG, Hyun DH, Lathia JD, Mughal MR, Savell J, Li SC, Nagaraju GP, Chan SL, Arumugam TV, Mattson MP (2008) Lifelong running reduces oxidative stress and degenerative changes in the testes of mice. J Endocrinol 199(2):333–341. https://doi.org/10.1677/joe-08-0306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao X, Bian Y, Sun Y, Li L, Wang L, Zhao C, Shen Y, Song Q, Qu Y, Niu S, Wu W, Gao F (2013) Effects of moderate exercise over different phases on age-related physiological dysfunction in testes of SAMP8 mice. Exp Gerontol 48(9):869–880. https://doi.org/10.1016/j.exger.2013.05.063

    Article  CAS  PubMed  Google Scholar 

  51. Joseph AM, Nguyen LM, Welter AE, Dominguez JM 2nd, Behnke BJ, Adhihetty PJ (2014) Mitochondrial adaptations evoked with exercise are associated with a reduction in age-induced testicular atrophy in Fischer-344 rats. Biogerontology 15(5):517–534. https://doi.org/10.1007/s10522-014-9526-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Ministero dell’Università e della Ricerca Scientifica, Italy.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DS; literature search and data analysis: SD’A, GS, DS; draft the article: SD’A, GS, DS; critical revision: SD’A, GS, AB, DS.

Corresponding author

Correspondence to D. Santi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40618_2020_1251_MOESM1_ESM.eps

Supplementary FIGURE 1: Forest plot including the results of sub-group analysis on total testosterone serum level by the time between the end of exercise and the sample collection. Footnote: Diamonds indicate the overall summary estimates for the analyses (width of the diamonds represents the 95% CI); boxes indicate the weight of individual studies in the pooled analyses. Serum total testosterone levels are reported in nmol/l. CI, confidence interval; df, degrees of freedom; IV, inverse variance; M-H, Mantel–Haenszel; SD, standard deviation (EPS 5306 kb)

40618_2020_1251_MOESM2_ESM.eps

Supplementary FIGURE 2: Forest plots depicting the standardized mean difference in levels of free total testosterone before and after acute physical exercise. Footnote: Diamonds indicate the overall summary estimates for the analyses (width of the diamonds represents the 95% CI); boxes indicate the weight of individual studies in the pooled analyses. Free total testosterone levels are reported in pmol/l. CI, confidence interval; df, degrees of freedom; IV, inverse variance; M-H, Mantel–Haenszel; SD, standard deviation (EPS 1192 kb)

40618_2020_1251_MOESM3_ESM.eps

Supplementary FIGURE 3: : Forest plot including the results of sub-group analysis on free testosterone level by the time between the end of exercise and the sample collection.Footnote: Diamonds indicate the overall summary estimates for the analyses (width of the diamonds represents the 95% CI); boxes indicate the weight of individual studies in the pooled analyses. Free total testosterone levels are reported in pmol/l. CI, confidence interval; df, degrees of freedom; IV, inverse variance; M-H, Mantel–Haenszel; SD, standard deviation (EPS 1558 kb)

40618_2020_1251_MOESM4_ESM.eps

Supplementary FIGURE 4: Forest plots depicting the standardized mean difference in serum levels of sex hormone binding globulin between before and after acute physical exercise. Footnote: Diamonds indicate the overall summary estimates for the analyses (width of the diamonds represents the 95% CI); boxes indicate the weight of individual studies in the pooled analyses. Sex hormone binding globulin levels are reported in nmol/l. CI, confidence interval; df, degrees of freedom; IV, inverse variance; M-H, Mantel–Haenszel; SD, standard deviation (EPS 1129 kb)

40618_2020_1251_MOESM5_ESM.eps

Supplementary FIGURE 5: Forest plot including the results of sub-group analysis on sex hormone binding globulin level by the time between the end of exercise and the sample collection. Footnote: Diamonds indicate the overall summary estimates for the analyses (width of the diamonds represents the 95% CI); boxes indicate the weight of individual studies in the pooled analyses. Sex hormone binding globulin levels are reported in pmol/l. CI, confidence interval; df, degrees of freedom; IV, inverse variance; M-H, Mantel–Haenszel; SD, standard deviation (EPS 1488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Andrea, S., Spaggiari, G., Barbonetti, A. et al. Endogenous transient doping: physical exercise acutely increases testosterone levels—results from a meta-analysis. J Endocrinol Invest 43, 1349–1371 (2020). https://doi.org/10.1007/s40618-020-01251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01251-3

Keywords

Navigation