Skip to main content

Advertisement

Log in

Association between vitamin D deficiency and common variants of Vitamin D binding protein gene among Mexican Mestizo and indigenous postmenopausal women

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Vitamin D deficiency (VDD) and polymorphisms in the group-specific component (GC) gene are known to be associated in different populations. However, the effects of such genetic variants may vary across different populations. Thus, the objective of this study was to estimate the association between Vitamin D-Binding Protein (VDBP) haplotypes and VDD in mestizo postmenopausal women and Mexican Amerindian ethnic groups.

Methods

This was a cross-sectional study of 726 postmenopausal Mexican women from the Health Workers Cohort Study (HWCS) and 166 postmenopausal women from the Metabolic Analysis in an Indigenous Sample (MAIS) cohort in Mexico. GC polymorphisms (rs7045 and rs4588) were analyzed by TaqMan probes. Serum 25-hydroxyvitamin D [25(OH)D] levels were measured by Chemiluminescent Microparticle Immuno Assay.

Results

The prevalence of VDD serum 25(OH)D < 20 ng/mL was 43.7% in mestizo women and 44.6% in indigenous women. In HWCS, the single nucleotide polymorphisms (SNPs) rs7041 and rs4588 were associated with VDD. In addition, women from the HWCS, carrying the haplotypes GC2/2 and GC1f/2 had higher odds of VDD (OR = 2.83, 95% CI 1.14, 7.02; and OR = 2.30, 95% CI 1.40, 3.78, respectively) compared to women with haplotype 1f/1 s. These associations were not statistically significant in the MAIS cohort.

Conclusions

Our results show genetic association of the analyzed SNPs and related haplotypes, on the GC gene, with VDD in mestizo Mexican postmenopausal women. Moreover, a high prevalence of VDD with high genetic variability within the country was observed. Our results support the need for national policies for preventing VDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holick MF, Chen TC (1086S) Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 87(4):1080S–1086S

    Article  CAS  Google Scholar 

  2. Gil Á, Plaza-Diaz J, Mesa MD (2018) Vitamin D: classic and novel actions. Ann Nutr Metab. https://doi.org/10.1159/000486536

    Article  PubMed  Google Scholar 

  3. DeLuca HF (1696S) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(6):1689S–1696S

    Article  CAS  Google Scholar 

  4. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2011-0385

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carrillo-Vega MF, García-Peña C, Gutiérrez-Robledo LM, Pérez-Zepeda MU (2017) Vitamin D deficiency in older adults and its associated factors: a cross-sectional analysis of the Mexican Health and Aging Study. Arch Osteoporos. https://doi.org/10.1007/s11657-016-0297-9

    Article  PubMed  Google Scholar 

  6. Holick MF (2017) The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. https://doi.org/10.1007/s11154-017-9424-1

    Article  PubMed  Google Scholar 

  7. Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. https://doi.org/10.1016/j.chembiol.2013.12.016

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dastani Z, Li R, Richards B (2013) Genetic regulation of vitamin D levels. Calcif Tissue Int. https://doi.org/10.1007/s00223-012-9660-z

    Article  PubMed  Google Scholar 

  9. Bhan I (2014) Vitamin D binding protein and bone health. Int J Endocrinol. https://doi.org/10.1155/2014/561214

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG (1986) Assessment of the free fraction of 25-hydroxyvitamin d in serum and its regulation by albumin and the vitamin d-binding protein. J Clin Endocrinol Metab. https://doi.org/10.1210/jcem-63-4-954

    Article  PubMed  Google Scholar 

  11. Arnaud J, Constans J (1993) Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet. https://doi.org/10.1007/BF00219689

    Article  PubMed  Google Scholar 

  12. Braun A, Bichlmaier R, Cleve H (1992) Molecular analysis of the gene for the human vitamin-D-binding protein (group-specific component): allelic differences of the common genetic GC types. Hum Genet 89:401–406

    Article  CAS  Google Scholar 

  13. Cleve H, Constans J (1988) The mutants of the vitamin-D-binding protein: more than 120 variants of the GC/DBP system. Vox Sang 54:215–225

    Article  CAS  Google Scholar 

  14. Contreras-Manzano A, Villalpando S, Robledo-Pérez R (2017) Vitamin D status by sociodemographic factors and body mass index in Mexican women at reproductive age. Salud Publica Mex. https://doi.org/10.21149/8080

    Article  PubMed  Google Scholar 

  15. Denova-Gutierrez E, Flores YN, Gallegos-Carrillo K et al (2016) Health workers cohort study: methods and study design. Salud Publica Mex 58:708–716

    Article  Google Scholar 

  16. Rivera-Paredez B, Macías N, Martínez-Aguilar MM et al (2018) Association between vitamin D deficiency and single nucleotide polymorphisms in the vitamin D receptor and GC genes and analysis of their distribution in Mexican postmenopausal women. Nutrients. https://doi.org/10.3390/nu10091175

    Article  PubMed  PubMed Central  Google Scholar 

  17. Contreras-Cubas C, Sánchez-Hernández BE, García-Ortiz H et al (2016) Heterogenous distribution of MTHFR gene variants among mestizos and diverse amerindian groups from Mexico. PLoS ONE. https://doi.org/10.1371/journal.pone.0163248

    Article  PubMed  PubMed Central  Google Scholar 

  18. Contreras-Manzano A, Villalpando S, Garcia-Diaz C, Flores-Aldana M (2019) Cardiovascular risk factors and their association with vitamin D deficiency in Mexican women of reproductive age. Nutrients. https://doi.org/10.3390/nu11061211

    Article  PubMed  PubMed Central  Google Scholar 

  19. Freeman J, Wilson K, Spears R, Shalhoub V, Sibley P (2015) Performance evaluation of four 25-hydroxyvitamin D assays to measure 25-hydroxyvitamin D2. Clin Biochem. https://doi.org/10.1016/j.clinbiochem.2015.05.021

    Article  PubMed  Google Scholar 

  20. Flores A, Flores M, Macias N, Hernández-Barrera L, Rivera M, Contreras A, Villalpando S (2017) Vitamin D deficiency is common and is associated with overweight in Mexican children aged 1–11 years. Public Health Nutr. https://doi.org/10.1017/S1368980017000040

    Article  PubMed  Google Scholar 

  21. Fitzpatrick TB (1988) The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. https://doi.org/10.1001/archderm.1988.01670060015008

    Article  PubMed  Google Scholar 

  22. Borges CR, Rehder DS, Jarvis JW, Schaab MR, Oran PE, Nelson RW (2010) Full-length characterization of proteins in human populations. Clin Chem. https://doi.org/10.1373/clinchem.2009.134858

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics. https://doi.org/10.1093/bioinformatics/bth457

    Article  PubMed  Google Scholar 

  24. Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: Design of linkage and association genetic mapping studies of complex traits. Bioinformatics. https://doi.org/10.1093/bioinformatics/19.1.149

    Article  PubMed  Google Scholar 

  25. The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation The 1000 Genomes Project Consortium*. Nature. https://doi.org/10.1038/nature15393

    Article  PubMed Central  Google Scholar 

  26. Juárez-Cedillo T, Zuñiga J, Acuña-Alonzo V et al (2008) Genetic admixture and diversity estimations in the Mexican Mestizo population from Mexico City using 15 STR polymorphic markers. Forensic Sci Int Genet. https://doi.org/10.1016/j.fsigen.2007.08.017

    Article  PubMed  Google Scholar 

  27. Instituto Nacional de los Pueblos Indígenas (2015) Cédulas de información básica de los pueblos indígenas de México. https://www.cdi.gob.mx/cedulas/. Accessed June 2019

  28. Valdés-Barrón M, Peláez-Chávez JC, Bonifaz-Alfonzo R, Riveros-Rosas D, Velasco-Herréra V, Estévez-Pérez H (2013) UVB solar radiation climatology for Mexico. Geofis Int. https://doi.org/10.1016/S0016-7169(13)71460-0

    Article  Google Scholar 

  29. Holick MF, Chen TC, Lu Z, Sauter E (2007) Vitamin D and skin physiology: a D-lightful story. J Bone Miner Res. https://doi.org/10.1359/jbmr.07s211

    Article  PubMed  Google Scholar 

  30. Rajan S, Weishaar T, Keller B (2017) Weight and skin colour as predictors of vitamin D status: results of an epidemiological investigation using nationally representative data. Public Health Nutr. https://doi.org/10.1017/S1368980016000173

    Article  PubMed  Google Scholar 

  31. Öhlund I, Lind T, Hernell O, Silfverdal SA, Äkeson PK (2017) Increased Vitamin D intake differentiated according to skin color is needed to meet requirements in young Swedish children during winter: a double-blind randomized clinical trial. Am J Clin Nutr. https://doi.org/10.3945/ajcn.116.147108

    Article  PubMed  Google Scholar 

  32. Datta P, Philipsen PA, Olsen P, Petersen B, Andersen JD, Morling N, Wulf HC (2019) Pigment genes not skin pigmentation affect UVB-induced vitamin D. Photochem Photobiol Sci. https://doi.org/10.1039/C8PP00320C

    Article  PubMed  Google Scholar 

  33. Adhikari K, Mendoza-Revilla J, Sohail A et al (2019) A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. Nat Commun. https://doi.org/10.1038/s41467-018-08147-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Coups EJ, Stapleton JL, Hudson SV, Medina-Forrester A, Natale-Pereira A, Goydos JS (2012) Sun protection and exposure behaviors among Hispanic adults in the United States: differences according to acculturation and among Hispanic subgroups. BMC Public Health. https://doi.org/10.1186/1471-2458-12-985

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pedroza-Tobías A, Hernández-Barrera L, López-Olmedo N, García-Guerra A, Rodríguez-Ramírez S, Ramírez-Silva I, Villalpando S, Carriquiry A, Rivera JA (2016) Usual vitamin intakes by Mexican populations. J Nutr. https://doi.org/10.3945/jn.115.219162

    Article  PubMed  Google Scholar 

  36. Sud SR, Montenegro-Bethancourt G, Bermúdez OI, Heaney RP, Armas L, Solomons NW (2010) Older Mayan residents of the western highlands of Guatemala lack sufficient levels of vitamin D. Nutr Res. https://doi.org/10.1016/j.nutres.2010.10.003

    Article  PubMed  Google Scholar 

  37. Cid-Soto MA, Martínez-Hernández A, García-Ortíz H et al (2018) Gene variants in AKT1, GCKR and SOCS3 are differentially associated with metabolic traits in Mexican Amerindians and Mestizos. Gene. https://doi.org/10.1016/j.gene.2018.08.076

    Article  PubMed  Google Scholar 

  38. Williams Amy AL, Jacobs Suzanne SBR, Moreno-Macías H et al (2014) Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. https://doi.org/10.1038/nature12828

    Article  PubMed  Google Scholar 

  39. Granados-Silvestre MA, Ortiz-López MG, Granados J, Canizales-Quinteros S, Peñaloza-Espinosa RI, Lechuga C, Acuña-Alonzo V, Sánchez-Pozos K, Menjivar M (2017) Susceptibility background for type 2 diabetes in eleven Mexican Indigenous populations: HNF4A gene analysis. Mol Genet Genomics. https://doi.org/10.1007/s00438-017-1340-2

    Article  PubMed  Google Scholar 

  40. Larrieta-Carrasco E, Acuña-Alonzo V, Velázquez-Cruz R et al (2014) PNPLA3 I148M polymorphism is associated with elevated alanine transaminase levels in Mexican Indigenous and Mestizo populations. Mol Biol Rep. https://doi.org/10.1007/s11033-014-3341-0

    Article  PubMed  Google Scholar 

  41. Ahn J, Yu K, Stolzenberg-Solomon R et al (2010) Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. https://doi.org/10.1093/hmg/ddq155

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang TJ, Zhang F, Richards JB et al (2010) Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. https://doi.org/10.1016/S0140-6736(10)60588-0

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang Z, He JW, Fu WZ, Zhang CQ, Zhang ZL (2013) An analysis of the association between the vitamin D pathway and serum 25-hydroxyvitamin D levels in a healthy Chinese population. J Bone Miner Res. https://doi.org/10.1002/jbmr.1926

    Article  PubMed  PubMed Central  Google Scholar 

  44. Series NI of H (US); BSCSNCS (2007) Understanding Human Genetic Variation. In: Bethesda. https://www.ncbi.nlm.nih.gov/books/NBK20363/. Accessed 14 Aug 2019

  45. Fang Y, Van Meurs JBJ, Arp P, Van Leeuwen JPT, Hofman A, Pols HAP, Uitterlinden AG (2009) Vitamin D binding protein genotype and osteoporosis. Calcif Tissue Int. https://doi.org/10.1007/s00223-009-9251-9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li L-H, Yin X-Y, Wu X-H, Zhang L, Pan S-Y, Zheng Z-J, Wang J-G (2013) Serum 25(OH)D and vitamin D status in relation to VDR, GC and CYP2R1 variants in Chinese. Endocr J. https://doi.org/10.1507/endocrj.ej13-0369

    Article  PubMed  Google Scholar 

  47. Gozdzik A, Zhu J, Wong BYL, Fu L, Cole DEC, Parra EJ (2011) Association of vitamin D binding protein (VDBP) polymorphisms and serum 25(OH)D concentrations in a sample of young Canadian adults of different ancestry. J Steroid Biochem Mol Biol. https://doi.org/10.1016/j.jsbmb.2011.05.009

    Article  PubMed  Google Scholar 

  48. Abbas S, Linseisen J, Slanger T, Kropp S, Mutschelknauss EJ, Flesch-Janys D, Chang-Claude J (2008) The Gc2 allele of the vitamin D binding protein is associated with a decreased postmenopausal breast cancer risk, independent of the vitamin D status. Cancer Epidemiol Biomark Prev. https://doi.org/10.1158/1055-9965.EPI-08-0162

    Article  Google Scholar 

  49. Zhou JC, Zhu Y, Gong C et al (2019) The GC2 haplotype of the vitamin D binding protein is a risk factor for a low plasma 25-hydroxyvitamin D concentration in a Han Chinese population 11 Medical and Health Sciences 1103 Clinical Sciences. Nutr Metab. https://doi.org/10.1186/s12986-019-0332-0

    Article  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank the Health Workers Cohort Study team and the study population for their participation. We also acknowledge the Technical Assistance provided by Jeny Flores Morales (Instituto Nacional de Medicina Genomica, INMEGEN). This work was supported by grants from the Mexican Council of Science and Technology (CONACyT): Grant INFR-2016-01-270405; Hospital Infantil de México, Grant HIM-2016-107 and partially supported by the Instituto Nacional de Medicina Genómica project 399-07/2019/I. The MAIS cohort study was supported by CONACyT Grant S008-2014-1-233970. Berenice Rivera-Paredez is a doctoral student from the Doctoral Program in Epidemiology at Instituto Nacional de Salud Pública (INSP), and received fellowship from the CONACYT. The funding support had no role in the design, analysis or writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Velázquez-Cruz.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval

The research was approved by the Mexican Social Security Institute and Instituto Nacional de Medicina Genomica, according to the principles of the Declaration of Helsinki, in accordance with the relevant guidelines and ethical regulations in research involving human participants.

Informed consent

All participants in the study provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Paredez, B., Hidalgo-Bravo, A., de la Cruz-Montoya, A. et al. Association between vitamin D deficiency and common variants of Vitamin D binding protein gene among Mexican Mestizo and indigenous postmenopausal women. J Endocrinol Invest 43, 935–946 (2020). https://doi.org/10.1007/s40618-019-01177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-019-01177-5

Keywords

Navigation