Skip to main content

Advertisement

Log in

The clinical phenotype of Graves’ disease occurring as an isolated condition or in association with other autoimmune diseases

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Graves’ disease (GD) can present as an isolated disease (iGD) or in association with other autoimmune diseases (aGD). The aim of this study, performed in two Endocrine referral centers settled in different geographical areas of Italy, was to compare the anthropometric, clinical, and biochemical phenotype of iGD patients with that of the aGD ones.

Methods

Clinical history, physical examination data, serum levels of TSH, FT4, FT3, thyroglobulin (TgAb), thyroid-peroxidase (TPOAb) and TSH-receptor (TRAb) antibody, presence of Graves’ orbitopathy (GO), and thyroid ultrasound examination at disease diagnosis were recorded.

Results

68 aGD and 136 iGD patients were consecutively recruited. At diagnosis, aGD and iGD patients did not differ for F/M ratio, age at presentation, thyroid function parameters, serum levels of TRAb, TgAb, TPOAb, presence of GO, and thyroid volume. The serum levels of TRAb were strongly correlated with the circulating concentrations of both FT3 (ρ = 0.667; p < 0.0001) and FT4 (ρ = 0.628; p < 0.001) in iGD patient, but not in the aGD ones (FT3: ρ = 0.231; p = 0.058; FT4: ρ = 0.096; p = 0.435). Compared with iGD patients, the aGD ones displayed a higher rate of transition from the previous hypothyroidism to hyperthyroidism (χ2 = 6.375; p = 0.012).

Conclusion

Despite similar anthropometric, clinical, and biochemical features at diagnosis, aGD patients display a higher rate of transition from a thyroid functional status to the other as compared with iGD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brent GA (2008) Clinical practice. Graves’ disease. N Engl J Med 358(24):2594–2605. https://doi.org/10.1056/NEJMcp0801880

    Article  CAS  PubMed  Google Scholar 

  2. Weetman AP (2000) Graves’ disease. N Engl J Med 343(17):1236–1248. https://doi.org/10.1056/NEJM200010263431707

    Article  CAS  PubMed  Google Scholar 

  3. Bartalena L (2013) Diagnosis and management of Graves disease: a global overview. Nat Rev Endocrinol 9(12):724–734. https://doi.org/10.1038/nrendo.2013.193

    Article  CAS  PubMed  Google Scholar 

  4. Bartalena L, Fatourechi V (2014) Extrathyroidal manifestations of Graves’ disease: a 2014 update. J Endocrinol Invest 37(8):691–700. https://doi.org/10.1007/s40618-014-0097-2

    Article  CAS  PubMed  Google Scholar 

  5. Bartalena L, Masiello E, Magri F et al (2016) The phenotype of newly diagnosed Graves’ disease in Italy in recent years is milder than in the past: results of a large observational longitudinal study. J Endocrinol Invest 39(12):1445–1451. https://doi.org/10.1007/s40618-016-0516-7

    Article  CAS  PubMed  Google Scholar 

  6. Struja T, Kaeslin M, Boesiger F et al (2017) External validation of the GREAT score to predict relapse risk in Graves’ disease: results from a multicenter, retrospective study with 741 patients. Eur J Endocrinol 176(4):413–419. https://doi.org/10.1530/EJE-16-0986

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Fu J, Xu Y, Wang G (2017) Antithyroid drug therapy for Graves’ disease and implications for recurrence. Int J Endocrinol 2017:3813540. https://doi.org/10.1155/2017/3813540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marinò M, Latrofa F, Menconi F, Chiovato L, Vitti P (2015) Role of genetic and non-genetic factors in the etiology of Graves’ disease. J Endocrinol Invest 38(3):283–294. https://doi.org/10.1007/s40618-014-0214-2

    Article  CAS  PubMed  Google Scholar 

  9. Rotondi M, Capelli V, Coperchini F et al (2018) Post-partum and non-post-partum relapsing Graves’ hyperthyroidism display different response to anti-thyroid drugs. Eur J Endocrinol 178(6):589–594. https://doi.org/10.1530/EJE-17-1063

    Article  CAS  PubMed  Google Scholar 

  10. Rotondi M, Cappelli C, Pirali B et al (2008) The effect of pregnancy on subsequent relapse from Graves’ disease after a successful course of antithyroid drug therapy. J Clin Endocrinol Metab 93(10):3985–3988. https://doi.org/10.1210/jc.2008-0966

    Article  CAS  PubMed  Google Scholar 

  11. Neufeld M, Maclaren N, Blizzard R (1980) Autoimmune polyglandular syndromes. Pediatr Ann 9(4):154–162

    Article  CAS  Google Scholar 

  12. Husebye ES, Anderson MS, Kämpe O (2018) Autoimmune polyendocrine syndromes. N Engl J Med 378(26):2543–2544. https://doi.org/10.1056/NEJMc1805308

    Article  PubMed  Google Scholar 

  13. Ruggeri RM, Trimarchi F, Giuffrida G et al (2017) Autoimmune comorbidities in Hashimoto’s thyroiditis: different patterns of association in adulthood and childhood/adolescence. Eur J Endocrinol 176(2):133–141. https://doi.org/10.1530/EJE-16-0737

    Article  CAS  PubMed  Google Scholar 

  14. Boelaert K, Newby PR, Simmonds MJ et al (2010) Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am J Med 123(2):183.e181–183.e189. https://doi.org/10.1016/j.amjmed.2009.06.030

    Article  Google Scholar 

  15. Ferrari SM, Fallahi P, Ruffilli I et al (2019) The association of other autoimmune diseases in patients with Graves’ disease (with or without ophthalmopathy): review of the literature and report of a large series. Autoimmun Rev 18(3):287–292. https://doi.org/10.1016/j.autrev.2018.10.001

    Article  PubMed  Google Scholar 

  16. Neumann WL, Coss E, Rugge M, Genta RM (2013) Autoimmune atrophic gastritis–pathogenesis, pathology and management. Nat Rev Gastroenterol Hepatol 10(9):529–541. https://doi.org/10.1038/nrgastro.2013.101

    Article  CAS  PubMed  Google Scholar 

  17. Mueller RB, Schiff M, Kaegi T et al (2015) The new 2010 ACR/EULAR criteria as predictor of clinical and radiographic response in patients with early arthritis. Clin Rheumatol 34(1):51–59. https://doi.org/10.1007/s10067-014-2737-5

    Article  CAS  PubMed  Google Scholar 

  18. Mosca M, Tani C, Vagnani S, Carli L, Bombardieri S (2014) The diagnosis and classification of undifferentiated connective tissue diseases. J Autoimmun 48–49:50–52. https://doi.org/10.1016/j.jaut.2014.01.019

    Article  PubMed  Google Scholar 

  19. Taïeb A, Picardo M, Members V (2007) The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force. Pigment Cell Res 20(1):27–35. https://doi.org/10.1111/j.1600-0749.2006.00355.x

    Article  PubMed  Google Scholar 

  20. Bai JC, Fried M, Corazza GR et al (2013) World Gastroenterology Organisation global guidelines on celiac disease. J Clin Gastroenterol 47(2):121–126. https://doi.org/10.1097/MCG.0b013e31827a6f83

    Article  PubMed  Google Scholar 

  21. Miyakis S, Lockshin MD, Atsumi T et al (2006) International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 4(2):295–306. https://doi.org/10.1111/j.1538-7836.2006.01753.x

    Article  CAS  PubMed  Google Scholar 

  22. Ludgate M, Emerson CH (2008) Metamorphic thyroid autoimmunity. Thyroid 18(10):1035–1037. https://doi.org/10.1089/thy.2008.1551

    Article  PubMed  Google Scholar 

  23. Osorio-Salazar C, Lecomte P, Madec AM, Baulieu JL (1994) Basedow disease following autoimmune primary hypothyroidism. Apropos of 7 cases. Ann Endocrinol (Paris) 55(5):185–189

    CAS  Google Scholar 

  24. Kamath C, Young S, Kabelis K et al (2012) Thyrotrophin receptor antibody characteristics in a woman with long-standing Hashimoto’s who developed Graves’ disease and pretibial myxoedema. Clin Endocrinol (Oxf) 77(3):465–470. https://doi.org/10.1111/j.1365-2265.2012.04397.x

    Article  CAS  Google Scholar 

  25. Takeda K, Takamatsu J, Kasagi K et al (1988) Development of hyperthyroidism following primary hypothyroidism: a case report with changes in thyroid-related antibodies. Clin Endocrinol (Oxf) 28(4):341–344

    Article  CAS  Google Scholar 

  26. Chung YH, Ou HY, Wu TJ (2004) Development of hyperthyroidism following primary hypothyroidism: a case report. Kaohsiung J Med Sci 20(4):188–191. https://doi.org/10.1016/S1607-551X(09)70105-6

    Article  PubMed  Google Scholar 

  27. McLachlan SM, Rapoport B (2013) Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid 23(1):14–24. https://doi.org/10.1089/thy.2012.0374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Champion B, Gopinath B, Ma G, El-Kaissi S, Wall JR (2008) Conversion to Graves’ hyperthyroidism in a patient with hypothyroidism due to Hashimoto’s thyroiditis documented by real-time thyroid ultrasonography. Thyroid 18(10):1135–1137. https://doi.org/10.1089/thy.2008.0142

    Article  PubMed  Google Scholar 

  29. Furqan S, Haque NU, Islam N (2014) Conversion of autoimmune hypothyroidism to hyperthyroidism. BMC Res Notes 7:489. https://doi.org/10.1186/1756-0500-7-489

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gupta Y, Singh S, Ammini AC (2012) Development of Graves’ disease after long-standing hypothyroidism on treatment, with acute toxicity to thionamides and lithium. BMJ Case Rep. https://doi.org/10.1136/bcr-2012-006433

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bell PM, Sinnamon DG, Smyth PP et al (1985) Hyperthyroidism following primary hypothyroidism in association with polyendocrine autoimmunity. Acta Endocrinol (Copenh) 108(4):491–497

    Article  CAS  Google Scholar 

  32. Cho BY, Shong YK, Lee HK, Koh CS, Min HK (1989) Graves’ hyperthyroidism following primary hypothyroidism: sequential changes in various activities of thyrotropin receptor antibodies. Acta Endocrinol (Copenh) 120(4):447–450

    Article  CAS  Google Scholar 

  33. Takasu N, Yamada T, Sato A et al (1990) Graves’ disease following hypothyroidism due to Hashimoto’s disease: studies of eight cases. Clin Endocrinol (Oxf) 33(6):687–698

    Article  CAS  Google Scholar 

  34. Gonzalez-Aguilera B, Betea D, Lutteri L et al (2018) Conversion to Graves disease from Hashimoto thyroiditis: a study of 24 patients. Arch Endocrinol Metab 62(6):609–614. https://doi.org/10.20945/2359-3997000000086

    Article  PubMed  Google Scholar 

  35. Wasniewska M, Corrias A, Arrigo T et al (2010) Frequency of Hashimoto’s thyroiditis antecedents in the history of children and adolescents with graves’ disease. Horm Res Paediatr 73(6):473–476. https://doi.org/10.1159/000313395

    Article  CAS  PubMed  Google Scholar 

  36. Aversa T, Lombardo F, Corrias A, Salerno M, De Luca F, Wasniewska M (2014) In young patients with Turner or Down syndrome, Graves’ disease presentation is often preceded by Hashimoto’s thyroiditis. Thyroid 24(4):744–747. https://doi.org/10.1089/thy.2013.0452

    Article  CAS  PubMed  Google Scholar 

  37. Mortensen KH, Cleemann L, Hjerrild BE et al (2009) Increased prevalence of autoimmunity in Turner syndrome–influence of age. Clin Exp Immunol 156(2):205–210. https://doi.org/10.1111/j.1365-2249.2009.03895.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pellegrini FP, Marinoni M, Frangione V et al (2012) Down syndrome, autoimmunity and T regulatory cells. Clin Exp Immunol 169(3):238–243. https://doi.org/10.1111/j.1365-2249.2012.04610.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chiovato L, Larizza D, Bendinelli G et al (1996) Autoimmune hypothyroidism and hyperthyroidism in patients with Turner’s syndrome. Eur J Endocrinol 134(5):568–575

    Article  CAS  Google Scholar 

  40. Morshed SA, Davies TF (2015) Graves’ disease mechanisms: the role of stimulating, blocking, and cleavage region TSH receptor antibodies. Horm Metab Res 47(10):727–734. https://doi.org/10.1055/s-0035-1559633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Evans M, Sanders J, Tagami T et al (2010) Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin Endocrinol (Oxf) 73(3):404–412. https://doi.org/10.1111/j.1365-2265.2010.03831.x

    Article  CAS  Google Scholar 

  42. Chiovato L, Fiore E, Vitti P et al (1998) Outcome of thyroid function in Graves’ patients treated with radioiodine: role of thyroid-stimulating and thyrotropin-blocking antibodies and of radioiodine-induced thyroid damage. J Clin Endocrinol Metab 83(1):40–46. https://doi.org/10.1210/jcem.83.1.4492

    Article  CAS  PubMed  Google Scholar 

  43. Kasagi K, Hidaka A, Endo K et al (1993) Fluctuating thyroid function depending on the balance between stimulating and blocking types of TSH receptor antibodies: a case report. Thyroid 3(4):315–318. https://doi.org/10.1089/thy.1993.3.315

    Article  CAS  PubMed  Google Scholar 

  44. Kraiem Z, Baron E, Kahana L, Sadeh O, Sheinfeld M (1992) Changes in stimulating and blocking TSH receptor antibodies in a patient undergoing three cycles of transition from hypo to hyper-thyroidism and back to hypothyroidism. Clin Endocrinol (Oxf) 36(2):211–214

    Article  CAS  Google Scholar 

  45. Wood LC, Ingbar SH (1979) Hypothyroidism as a late sequela in patient with Graves’ disease treated with antithyroid agents. J Clin Invest 64(5):1429–1436. https://doi.org/10.1172/JCI109601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tamai H, Kasagi K, Takaichi Y et al (1989) Development of spontaneous hypothyroidism in patients with Graves’ disease treated with antithyroidal drugs: clinical, immunological, and histological findings in 26 patients. J Clin Endocrinol Metab 69(1):49–53. https://doi.org/10.1210/jcem-69-1-49

    Article  CAS  PubMed  Google Scholar 

  47. Shigemasa C, Mitani Y, Taniguchi S et al (1990) Three patients who spontaneously developed persistent hypothyroidism during or following treatment with antithyroid drugs for Graves’ hyperthyroidism. Arch Intern Med 150(5):1105–1109

    Article  CAS  Google Scholar 

Download references

Funding

This paper was not supported by any grant or funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Chiovato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Formal approval by the ethical committee was not required in accordance with the Italian regulation for non-interventional (observational) retrospective studies concerning human beings (AIFA Guidelines for Observational Studies, see www.AIFA.gov).

Informed consent

All patients signed an informed consent concerning the future use of their clinic data for research purposes and data collected remained strictly confidential and anonymous, according to the ethical rules of our Hospital institutions and to the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotondi, M., Virili, C., Pinto, S. et al. The clinical phenotype of Graves’ disease occurring as an isolated condition or in association with other autoimmune diseases. J Endocrinol Invest 43, 157–162 (2020). https://doi.org/10.1007/s40618-019-01094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-019-01094-7

Keywords

Navigation