Skip to main content
Log in

Clinical recognition and evaluation of patients with inherited serum thyroid hormone-binding protein mutations

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

There are three important thyroid hormone-binding proteins in human serum, thyroxine-binding globulin, transthyretin, and albumin. Genetic variation in these proteins can lead to altered thyroid hormone binding and abnormalities in serum tests of thyroid hormone. Importantly, patients harboring these mutations are euthyroid; thus, the recognition of these conditions is crucial to prevent unnecessary repeated testing and treatment. This article provides an updated overview of serum thyroid hormone transport biology and reviews the underlying genetic alterations, clinical presentation, and appropriate evaluation of patients with suspected mutations in serum thyroid hormone-binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mullur R, Liu Y-Y, Brent GA (2014) Thyroid hormone regulation of metabolism Physiological reviews, vol 94. American Physiological Society, Bethesda

    Google Scholar 

  2. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, Cooper DS, Kim BW, Peeters RP, Rosenthal MS, Sawka AM, American Thyroid Association Task Force on Thyroid Hormone R (2014) Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid 24(12):1670–1751. https://doi.org/10.1089/thy.2014.0028

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gereben B, McAninch EA, Ribeiro MO, Bianco AC (2015) Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol 11(11):642–652. https://doi.org/10.1038/nrendo.2015.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Refetoff S, Robin NI, Fang VS (1970) Parameters of thyroid function in serum of 16 selected vertebrate species: a study of PBI, serum T4, free T4, and the pattern of T4 and T3 binding to serum proteins. Endocrinology 86(4):793–805. https://doi.org/10.1210/endo-86-4-793

    Article  CAS  PubMed  Google Scholar 

  5. Oppenheimer JH (1968) Role of plasma proteins in the binding, distribution and metabolism of the thyroid hormones. N Engl J Med 278(21):1153–1162. https://doi.org/10.1056/NEJM196805232782107

    Article  CAS  PubMed  Google Scholar 

  6. Mendel CM, Weisiger RA, Jones AL, Cavalieri RR (1987) Thyroid hormone-binding proteins in plasma facilitate uniform distribution of thyroxine within tissues: a perfused rat liver study. Endocrinology 120(5):1742–1749. https://doi.org/10.1210/endo-120-5-1742

    Article  CAS  PubMed  Google Scholar 

  7. Janssen OE, Golcher HM, Grasberger H, Saller B, Mann K, Refetoff S (2002) Characterization of T(4)-binding globulin cleaved by human leukocyte elastase. J Clin Endocrinol Metab 87(3):1217–1222. https://doi.org/10.1210/jcem.87.3.8332

    Article  CAS  PubMed  Google Scholar 

  8. Trent JM, Flink IL, Morkin E, van Tuinen P, Ledbetter DH (1987) Localization of the human thyroxine-binding globulin gene to the long arm of the X chromosome (Xq21-22). Am J Hum Genet 41(3):428–435

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartalena L, Tata JR, Robbins J (1984) Characterization of nascent and secreted thyroxine-binding globulin in cultured human hepatoma (Hep G2) cells. J Biol Chem 259(21):13605–13609

    CAS  PubMed  Google Scholar 

  10. Murata Y, Magner JA, Refetoff S (1986) The role of glycosylation in the molecular conformation and secretion of thyroxine-binding globulin. Endocrinology 118(4):1614–1621. https://doi.org/10.1210/endo-118-4-1614

    Article  CAS  PubMed  Google Scholar 

  11. Okamoto H, Mori Y, Tani Y, Nakagomi Y, Sano T, Ohyama K, Saito H, Oiso Y (1996) Molecular analysis of females manifesting thyroxine-binding globulin (TBG) deficiency: selective X-chromosome inactivation responsible for the difference between phenotype and genotype in TBG-deficient females. J Clin Endocrinol Metab 81(6):2204–2208. https://doi.org/10.1210/jcem.81.6.8964852

    Article  CAS  PubMed  Google Scholar 

  12. Gomes-Lima CJ, Maciel A, Andrade MO, Cunha VSD, Mazzeu JF, Bleicher L, Neves FAR, Lofrano-Porto A (2018) Thyroxine-binding globulin deficiency due to a novel SERPINA7 mutation: clinical characterization, analysis of X-chromosome inactivation pattern and protein structural modeling. Gene 666:58–63. https://doi.org/10.1016/j.gene.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  13. Murata Y, Refetoff S, Sarne DH, Dick M, Watson F (1985) Variant thyroxine-binding globulin in serum of Australian aborigines: its physical, chemical and biological properties. J Endocrinol Invest 8(3):225–232. https://doi.org/10.1007/BF03348482

    Article  CAS  PubMed  Google Scholar 

  14. Takamatsu J, Refetoff S, Charbonneau M, Dussault JH (1987) Two new inherited defects of the thyroxine-binding globulin (TBG) molecule presenting as partial TBG deficiency. J Clin Invest 79(3):833–840. https://doi.org/10.1172/JCI112891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mori Y, Seino S, Takeda K, Flink IL, Murata Y, Bell GI, Refetoff S (1989) A mutation causing reduced biological activity and stability of thyroxine-binding globulin probably as a result of abnormal glycosylation of the molecule. Mol Endocrinol 3(3):575–579. https://doi.org/10.1210/mend-3-3-575

    Article  CAS  PubMed  Google Scholar 

  16. Kambe F, Seo H, Mori Y, Murata Y, Janssen OE, Refetoff S, Matsui N (1992) An additional carbohydrate chain in the variant thyroxine-binding globulin-Gary (TBGAsn-96) impairs its secretion. Mol Endocrinol 6(3):443–449. https://doi.org/10.1210/mend.6.3.1584218

    Article  CAS  PubMed  Google Scholar 

  17. Refetoff S (2015) Abnormal thyroid hormone transport. http://www.thyroidmanager.org/chapter/abnormal-thyroid-hormone-transport/. Accessed 14 Apr 2019

  18. Mori Y, Miura Y, Takeuchi H, Igarashi Y, Sugiura J, Saito H, Oiso Y (1995) Gene amplification as a cause of inherited thyroxine-binding globulin excess in two Japanese families. J Clin Endocrinol Metab 80(12):3758–3762. https://doi.org/10.1210/jcem.80.12.8530630

    Article  CAS  PubMed  Google Scholar 

  19. Refetoff S (1989) Inherited thyroxine-binding globulin abnormalities in man. Endocr Rev 10(3):275–293. https://doi.org/10.1210/edrv-10-3-275

    Article  CAS  PubMed  Google Scholar 

  20. Refetoff S, Selenkow HA (1968) Familial thyroxine-binding globulin deficiency in a patient with Turner’s syndrome (XO). Genetic study of a kindred. N Engl J Med 278(20):1081–1087. https://doi.org/10.1056/nejm196805162782002

    Article  CAS  PubMed  Google Scholar 

  21. Murata Y, Takamatsu J, Refetoff S (1986) Inherited abnormality of thyroxine-binding globulin with no demonstrable thyroxine-binding activity and high serum levels of denatured thyroxine-binding globulin. N Engl J Med 314(11):694–699. https://doi.org/10.1056/NEJM198603133141107

    Article  CAS  PubMed  Google Scholar 

  22. Takamatsu J, Ando M, Weinberg M, Refetoff S (1986) Isoelectric focusing variant thyroxine-binding globulin in American blacks: increased heat lability and reduced serum concentration. J Clin Endocrinol Metab 63(1):80–87. https://doi.org/10.1210/jcem-63-1-80

    Article  CAS  PubMed  Google Scholar 

  23. Takamatsu J, Refetoff S (1986) Inherited heat-stable variant thyroxine-binding globulin (TBG-Chicago). J Clin Endocrinol Metab 63(5):1140–1144. https://doi.org/10.1210/jcem-63-5-1140

    Article  CAS  PubMed  Google Scholar 

  24. Takeda K, Mori Y, Sobieszczyk S, Seo H, Dick M, Watson F, Flink IL, Seino S, Bell GI, Refetoff S (1989) Sequence of the variant thyroxine-binding globulin of Australian aborigines. Only one of two amino acid replacements is responsible for its altered properties. J Clin Invest 83(4):1344–1348. https://doi.org/10.1172/jci114021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferrara AM, Pappa T, Fu J, Brown CD, Peterson A, Moeller LC, Wyne K, White KP, Pluzhnikov A, Trubetskoy V, Nobrega M, Weiss RE, Dumitrescu AM, Refetoff S (2015) A novel mechanism of inherited TBG deficiency: mutation in a liver-specific enhancer. J Clin Endocrinol Metab 100(1):E173–E181. https://doi.org/10.1210/jc.2014-3490

    Article  CAS  PubMed  Google Scholar 

  26. Horwitz DL, Refetoff S (1977) Graves’ disease associated with familial deficiency of thyroxine-binding globulin. J Clin Endocrinol Metab 44(2):242–247. https://doi.org/10.1210/jcem-44-2-242

    Article  CAS  PubMed  Google Scholar 

  27. Berger HR, Creech MK, Hannoush Z, Watanabe Y, Kargi A, Weiss RE (2017) A novel mutation causing complete thyroid binding globulin deficiency (Tbg-Cd Mia) in a male with coexisting graves disease. AACE Clin Case Rep 3(2):e134–e139. https://doi.org/10.4158/EP161421.CR

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tahboub R, Arafah BM (2009) Sex steroids and the thyroid. Best Pract Res Clin Endocrinol Metab 23(6):769–780. https://doi.org/10.1016/j.beem.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  29. Reilly CP, Wellby ML (1983) Slow thyroxine binding globulin in the pathogenesis of increased dialysable fraction of thyroxine in nonthyroidal illnesses. J Clin Endocrinol Metab 57(1):15–18. https://doi.org/10.1210/jcem-57-1-15

    Article  CAS  PubMed  Google Scholar 

  30. Oppenheimer JH, Werner SC (1966) Effect of prednisone on thyroxine-binding proteins. J Clin Endocrinol Metab 26(7):715–721. https://doi.org/10.1210/jcem-26-7-715

    Article  CAS  PubMed  Google Scholar 

  31. Braverman LE, Ingbar SH (1967) Effects of norethandrolone on the transport in serum and peripheral turnover of thyroxine. J Clin Endocrinol Metab 27(3):389–396. https://doi.org/10.1210/jcem-27-3-389

    Article  CAS  PubMed  Google Scholar 

  32. Ain KB, Mori Y, Refetoff S (1987) Reduced clearance rate of thyroxine-binding globulin (TBG) with increased sialylation: a mechanism for estrogen-induced elevation of serum TBG concentration. J Clin Endocrinol Metab 65(4):689–696. https://doi.org/10.1210/jcem-65-4-689

    Article  CAS  PubMed  Google Scholar 

  33. Kanda Y, Goodman DS, Canfield RE, Morgan FJ (1974) The amino acid sequence of human plasma prealbumin. J Biol Chem 249(21):6796–6805

    CAS  PubMed  Google Scholar 

  34. Palha JA, Fernandes R, de Escobar GM, Episkopou V, Gottesman M, Saraiva MJ (2000) Transthyretin regulates thyroid hormone levels in the choroid plexus, but not in the brain parenchyma: study in a transthyretin-null mouse model. Endocrinology 141(9):3267–3272. https://doi.org/10.1210/endo.141.9.7659

    Article  CAS  PubMed  Google Scholar 

  35. Palha JA (2002) Transthyretin as a thyroid hormone carrier: function revisited. Clin Chem Lab Med 40(12):1292–1300. https://doi.org/10.1515/CCLM.2002.223

    Article  CAS  PubMed  Google Scholar 

  36. Monk JA, Sims NA, Dziegielewska KM, Weiss RE, Ramsay RG, Richardson SJ (2013) Delayed development of specific thyroid hormone-regulated events in transthyretin null mice. Am J Physiol Endocrinol Metab 304(1):E23–E31. https://doi.org/10.1152/ajpendo.00216.2012

    Article  CAS  PubMed  Google Scholar 

  37. Richardson SJ, Lemkine GF, Alfama G, Hassani Z, Demeneix BA (2007) Cell division and apoptosis in the adult neural stem cell niche are differentially affected in transthyretin null mice. Neurosci Lett 421(3):234–238. https://doi.org/10.1016/j.neulet.2007.05.040

    Article  CAS  PubMed  Google Scholar 

  38. Saraiva MJ (2002) Hereditary transthyretin amyloidosis: molecular basis and therapeutical strategies. Expert Rev Mol Med 4(12):1–11. https://doi.org/10.1017/S1462399402004647

    Article  PubMed  Google Scholar 

  39. Rosen HN, Moses AC, Murrell JR, Liepnieks JJ, Benson MD (1993) Thyroxine interactions with transthyretin: a comparison of 10 different naturally occurring human transthyretin variants. J Clin Endocrinol Metab 77(2):370–374. https://doi.org/10.1210/jcem.77.2.8345041

    Article  CAS  PubMed  Google Scholar 

  40. Scrimshaw BJ, Fellowes AP, Palmer BN, Croxson MS, Stockigt JR, George PM (1992) A novel variant of transthyretin (prealbumin), Thr119 to Met, associated with increased thyroxine binding. Thyroid 2(1):21–26. https://doi.org/10.1089/thy.1992.2.21

    Article  CAS  PubMed  Google Scholar 

  41. Minchiotti L, Galliano M, Caridi G, Kragh-Hansen U, Peters T Jr (2013) Congenital analbuminaemia: molecular defects and biochemical and clinical aspects. Biochim Biophys Acta 1830 12:5494–5502. https://doi.org/10.1016/j.bbagen.2013.04.019

    Article  CAS  Google Scholar 

  42. Hollander CS, Bernstein G, Oppenheimer JH (1968) Abnormalities of thyroxine binding in analbuminemia. J Clin Endocrinol Metab 28(7):1064–1066. https://doi.org/10.1210/jcem-28-7-1064

    Article  CAS  PubMed  Google Scholar 

  43. Hennemann G, Docter R, Krenning EP, Bos G, Otten M, Visser TJ (1979) Raised total thyroxine and free thyroxine index but normal free thyroxine. A serum abnormality due to inherited increased affinity of iodothyronines for serum binding protein. Lancet 1(8117):639–642. https://doi.org/10.1016/s0140-6736(79)91080-8

    Article  CAS  PubMed  Google Scholar 

  44. DeCosimo DR, Fang SL, Braverman LE (1987) Prevalence of familial dysalbuminemic hyperthyroxinemia in Hispanics. Ann Intern Med 107(5):780–781. https://doi.org/10.7326/0003-4819-107-5-780_2

    Article  CAS  PubMed  Google Scholar 

  45. Tajima T, Jo W, Fujikura K, Fukushi M, Fujieda K (2009) Elevated free thyroxine levels detected by a neonatal screening system. Pediatr Res 66(3):312–316. https://doi.org/10.1203/PDR.0b013e3181b1bcbd

    Article  CAS  PubMed  Google Scholar 

  46. Osaki Y, Hayashi Y, Nakagawa Y, Yoshida K, Ozaki H, Fukazawa H (2016) Familial dysalbuminemic hyperthyroxinemia in a Japanese man caused by a point albumin gene mutation (R218P). Jpn Clin Med 7:9–13. https://doi.org/10.4137/JCM.S38990

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wada N, Chiba H, Shimizu C, Kijima H, Kubo M, Koike T (1997) A novel missense mutation in codon 218 of the albumin gene in a distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocrinol Metab 82(10):3246–3250. https://doi.org/10.1210/jcem.82.10.4276

    Article  CAS  PubMed  Google Scholar 

  48. Sunthornthepvarakul T, Likitmaskul S, Ngowngarmratana S, Angsusingha K, Kitvitayasak S, Scherberg NH, Refetoff S (1998) Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly inherited albumin defect. J Clin Endocrinol Metab 83(5):1448–1454. https://doi.org/10.1210/jcem.83.5.4815

    Article  CAS  PubMed  Google Scholar 

  49. Kragh-Hansen U, Galliano M, Minchiotti L (2017) Clinical, genetic, and protein structural aspects of familial dysalbuminemic hyperthyroxinemia and hypertriiodothyroninemia. Front Endocrinol (Lausanne) 8:297. https://doi.org/10.3389/fendo.2017.00297

    Article  Google Scholar 

  50. Sunthornthepvarakul T, Angkeow P, Weiss RE, Hayashi Y, Refetoff S (1994) An identical missense mutation in the albumin gene results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated families. Biochem Biophys Res Commun 202(2):781–787

    Article  CAS  Google Scholar 

  51. Greenberg SM, Ferrara AM, Nicholas ES, Dumitrescu AM, Cody V, Weiss RE, Refetoff S (2014) A novel mutation in the Albumin gene (R218S) causing familial dysalbuminemic hyperthyroxinemia in a family of Bangladeshi extraction. Thyroid 24(6):945–950. https://doi.org/10.1089/thy.2013.0540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pannain S, Feldman M, Eiholzer U, Weiss RE, Scherberg NH, Refetoff S (2000) Familial dysalbuminemic hyperthyroxinemia in a Swiss family caused by a mutant albumin (R218P) shows an apparent discrepancy between serum concentration and affinity for thyroxine. J Clin Endocrinol Metab 85(8):2786–2792. https://doi.org/10.1210/jcem.85.8.6746

    Article  CAS  PubMed  Google Scholar 

  53. Schoenmakers N, Moran C, Campi I, Agostini M, Bacon O, Rajanayagam O, Schwabe J, Bradbury S, Barrett T, Geoghegan F, Druce M, Beck-Peccoz P, O’Toole A, Clark P, Bignell M, Lyons G, Halsall D, Gurnell M, Chatterjee K (2014) A novel albumin gene mutation (R222I) in familial dysalbuminemic hyperthyroxinemia. J Clin Endocrinol Metab 99(7):E1381–E1386. https://doi.org/10.1210/jc.2013-4077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arem R, Cusi K (1997) Thyroid function testing in psychiatric illness: usefulness and limitations. Trends Endocrinol Metab 8(7):282–287

    Article  CAS  Google Scholar 

  55. Despres N, Grant AM (1998) Antibody interference in thyroid assays: a potential for clinical misinformation. Clin Chem 44(3):440–454

    CAS  PubMed  Google Scholar 

  56. Samarasinghe S, Meah F, Singh V, Basit A, Emanuele N, Emanuele MA, Mazhari A, Holmes EW (2017) Biotin interference with routine clinical immunoassays: understand the causes and mitigate the risks. Endocr Pract 23(8):989–998. https://doi.org/10.4158/EP171761.RA

    Article  PubMed  Google Scholar 

  57. Beck-Peccoz P, Giavoli C, Lania A (2019) A 2019 update on TSH-secreting pituitary adenomas. J Endocrinol Invest. https://doi.org/10.1007/s40618-019-01066-x

    Article  PubMed  Google Scholar 

  58. Refetoff S, Weiss RE, Usala SJ (1993) The syndromes of resistance to thyroid hormone. Endocr Rev 14(3):348–399. https://doi.org/10.1210/edrv-14-3-348

    Article  CAS  PubMed  Google Scholar 

  59. Ross HA, de Rijke YB, Sweep FC (2011) Spuriously high free thyroxine values in familial dysalbuminemic hyperthyroxinemia. Clin Chem 57(3):524–525. https://doi.org/10.1373/clinchem.2010.158170

    Article  CAS  PubMed  Google Scholar 

  60. Pappa T, Ferrara AM, Refetoff S (2015) Inherited defects of thyroxine-binding proteins. Best Pract Res Clin Endocrinol Metab 29(5):735–747. https://doi.org/10.1016/j.beem.2015.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Refetoff S, Dwulet FE, Benson MD (1986) Reduced affinity for thyroxine in two of three structural thyroxine-binding prealbumin variants associated with familial amyloidotic polyneuropathy. J Clin Endocrinol Metab 63(6):1432–1437. https://doi.org/10.1210/jcem-63-6-1432

    Article  CAS  PubMed  Google Scholar 

  62. Almeida MR, Saraiva MJ (1996) Thyroxine binding to transthyretin (TTR) variants–two variants (TTR Pro 55 and TTR Met 111) with a particularly low binding affinity. Eur J Endocrinol 135(2):226–230

    Article  CAS  Google Scholar 

  63. Rosen HN, Murrell JR, Liepnieks JJ, Benson MD, Cody V, Moses AC (1994) Threonine for alanine substitution at position 109 of transthyretin differentially alters human transthyretin’s affinity for iodothyronines. Endocrinology 134(1):27–34. https://doi.org/10.1210/endo.134.1.8275943

    Article  CAS  PubMed  Google Scholar 

  64. Refetoff S, Marinov VS, Tunca H, Byrne MM, Sunthornthepvarakul T, Weiss RE (1996) A new family with hyperthyroxinemia caused by transthyretin Val109 misdiagnosed as thyrotoxicosis and resistance to thyroid hormone—a clinical research center study. J Clin Endocrinol Metab 81(9):3335–3340. https://doi.org/10.1210/jcem.81.9.8784093

    Article  CAS  PubMed  Google Scholar 

  65. Curtis AJ, Scrimshaw BJ, Topliss DJ, Stockigt JR, George PM, Barlow JW (1994) Thyroxine binding by human transthyretin variants: mutations at position 119, but not position 54, increase thyroxine binding affinity. J Clin Endocrinol Metab 78(2):459–462. https://doi.org/10.1210/jcem.78.2.7906282

    Article  CAS  PubMed  Google Scholar 

  66. Moeller LC, Vinzelberg P, Jaeger A, Appiyagyei-Dankah Y, Fingerhut A, Mann K, Janssen OE (2007) Two novel mutations leading to partial and complete thyroxine-binding globulin deficiency. In: Symposium of the German Society for Endocrinology, March 7–11 2007, Salzburg, Austria

Download references

Funding

This work was supported in part by Grants R01DK15070 from the National Institutes of Health to SR. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Refetoff.

Ethics declarations

Conflict of interest

MSM declares that her spouse receives salary and stock from Pfizer, Inc. The authors declare that no competing financial interests exist.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of an Institutional Review Board.

Informed consent

Written consent was obtained in accordance with an Institutional Review Board-approved protocol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mimoto, M.S., Refetoff, S. Clinical recognition and evaluation of patients with inherited serum thyroid hormone-binding protein mutations. J Endocrinol Invest 43, 31–41 (2020). https://doi.org/10.1007/s40618-019-01084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-019-01084-9

Keywords

Navigation