Skip to main content

Advertisement

Log in

Therapeutic effects of obeticholic acid (OCA) treatment in a bleomycin-induced pulmonary fibrosis rat model

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

We recently demonstrated a protective effect of the farnesoid X receptor agonist obeticholic acid (OCA) in rat models of bleomycin-induced pulmonary fibrosis (PF). Aim of the present study was to investigate whether the positive effects of OCA treatment are apparent also on ongoing bleomycin-induced PF, i.e., after 2 weeks of bleomycin administration.

Methods

Bleomycin-induced PF rats were treated 2 weeks after bleomycin administration with OCA or pirfenidone for two additional weeks. Pulmonary function test was performed at 2 and 4 weeks in all experimental groups. At the same time points, lung morphological features and mRNA expression profile of genes related to fibrosis, inflammation and epithelial–mesenchymal transition were also assessed.

Results

After 2 weeks, bleomycin significantly increased the pressure at the airway opening (PAO), a functional parameter related to fibrosis-induced lung stiffness, and induced diffuse lung interstitium fibrosis, with upregulation of inflammation (IL1β, MCP1) and tissue remodeling (COL1A1, COL3A1, ET1, MMP7, PDGFa, αSMA, SNAI1) markers. At week four, a further increase of lung fibrosis and PAO was observed, accompanied by upregulation of extracellular matrix-related mRNA expression. OCA administration, even after the establishment of PF, significantly improved pulmonary function, normalizing PAO, and reverted the bleomycin-induced lung alterations, with significant reduction of markers of inflammation (CD206, COX2, HIF1, IL1β, MCP1), epithelial proliferation (CTGF, PDGFa) and fibrosis (COL1A1, COL3A1, ET1, FN1, MMPs, αSMA, SNAIs, TGFβ1, TIMPs). Results with OCA were similar or superior to those obtained with pirfenidone.

Conclusions

In conclusion, our results demonstrate a significant therapeutic effect of OCA in already established PF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. King TE Jr, Pardo A, Selman M (2011) Idiopathic pulmonary fibrosis. Lancet 378:1949–1961

    Article  PubMed  Google Scholar 

  2. Navaratnam V, Fleming KM, West J et al (2011) The rising incidence of idiopathic pulmonary fibrosis in the UK. Thorax 66:462–467

    Article  PubMed  CAS  Google Scholar 

  3. Sgalla G, Biffi A, Richeldi L (2016) Idiopathic pulmonary fibrosis: diagnosis, epidemiology and natural history. Respirology 21:427–437

    Article  PubMed  Google Scholar 

  4. Sakuma Y (2017) Epithelial-to-mesenchymal transition and its role in EGFR-mutant lung adenocarcinoma and idiopathic pulmonary fibrosis. Pathol Int 67:379–388

    Article  PubMed  CAS  Google Scholar 

  5. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  PubMed  CAS  Google Scholar 

  6. Schürch W, Seemayer TA, Gabbiani G (1998) The myofibroblast: a quarter century after its discovery. Am J Surg Pathol 22:141–147

    Article  PubMed  Google Scholar 

  7. Serini G, Gabbiani G (1999) Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 250(2):273–283

    Article  PubMed  CAS  Google Scholar 

  8. Phan SH (2002) The myofibroblast in pulmonary fibrosis. Chest 122(S6):286S–289S

    Article  PubMed  Google Scholar 

  9. Kasai H, Allen JT, Mason RM et al (2005) TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fernandez IE, Eickelberg O (2012) The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 9:111–116

    Article  PubMed  CAS  Google Scholar 

  11. Wollin L, Wex E, Pautsch A et al (2015) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 45:1434–1445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618

    PubMed  CAS  Google Scholar 

  13. Bolós V, Peinado H, Pérez-Moreno MA et al (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116:499–511

    Article  PubMed  CAS  Google Scholar 

  14. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Raghu G, Selman M (2015) Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions. Am J Respir Crit Care Med 191:252–254

    Article  PubMed  CAS  Google Scholar 

  16. Spagnolo P, Maher TM, Richeldi L (2015) Idiopathic pulmonary fibrosis: recent advances on pharmacological therapy. Pharmacol Ther 152:18–27

    Article  PubMed  CAS  Google Scholar 

  17. Schaefer CJ, Ruhrmund DW, Pan L et al (2011) Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev 20:85–97

    Article  PubMed  CAS  Google Scholar 

  18. Richeldi L, du Bois RM, Raghu G et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082

    Article  PubMed  CAS  Google Scholar 

  19. Raghu G, Rochwerg B, Zhang Y et al (2015) An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med 192:3–19

    Article  Google Scholar 

  20. Carlos WG, Strek ME, Wang TS et al (2016) Treatment of idiopathic pulmonary fibrosis. Ann Am Thorac Soc 13:115–117

    Article  PubMed  Google Scholar 

  21. Caminati A, Cassandro R, Torre O, Harari S (2017) Severe idiopathic pulmonary fibrosis: what can be done? Eur Respir Rev. 26:170047. https://doi.org/10.1183/16000617.0047-2017

    Article  PubMed  Google Scholar 

  22. Moeller A, Ask K, Warburton D et al (2008) The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 40:362–382

    Article  PubMed  CAS  Google Scholar 

  23. Mouratis MA, Aidinis V (2011) Modeling pulmonary fibrosis with bleomycin. Curr Opin Pulm Med 17:355–361

    Article  PubMed  CAS  Google Scholar 

  24. Della Latta V, Cecchettini A, Del Ry S, Morales MA (2015) Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions. Pharmacol Res 97:122–130

    Article  PubMed  CAS  Google Scholar 

  25. Comeglio P, Filippi S, Sarchielli E et al (2017) Anti-fibrotic effects of chronic treatment with the selective FXR agonist obeticholic acid in the bleomycin-induced rat model of pulmonary fibrosis. J Steroid Biochem Mol Biol 168:26–37

    Article  PubMed  CAS  Google Scholar 

  26. Lefebvre P, Cariou B, Lien F et al (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89:147–191

    Article  PubMed  CAS  Google Scholar 

  27. Wang XX, Jiang T, Shen Y et al (2010) Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 59:2916–2927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Vignozzi L, Morelli A, Filippi S et al (2011) Farnesoid X receptor activation improves erectile function in animal models of metabolic syndrome and diabetes. J Sex Med 8(1):57–77

    Article  PubMed  CAS  Google Scholar 

  29. Adorini L, Pruzanski M, Shapiro D (2012) Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today 17:988–997

    Article  PubMed  CAS  Google Scholar 

  30. Vignozzi L, Filippi S, Comeglio P et al (2014) Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit. Mol Cell Endocrinol 384:143–154

    Article  PubMed  CAS  Google Scholar 

  31. Ali AH, Carey EJ, Lindor KD (2015) Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med 3:5

    PubMed  PubMed Central  Google Scholar 

  32. Zhou C, Shi Y, Li J, Zhang W et al (2013) The effects of taurochenodeoxycholic acid in preventing pulmonary fibrosis in mice. Pak J Pharm Sci 26:761–765

    PubMed  CAS  Google Scholar 

  33. Neuschwander-Tetri BA, Loomba R, Sanyal AJ et al (2015) Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385:956–965

    Article  PubMed  CAS  Google Scholar 

  34. Hendrick SM, Mroz MS, Greene CM et al (2014) Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 307:407–418

    Article  CAS  Google Scholar 

  35. Vignozzi L, Morelli A, Cellai I et al (2017) Cardiopulmonary protective effects of the selective FXR agonist obeticholic acid in the rat model of monocrotaline-induced pulmonary hypertension. J Steroid Biochem Mol Biol 165:277–292

    Article  PubMed  CAS  Google Scholar 

  36. Zhang L, Li T, Yu D et al (2012) FXR protects lung from lipopolysaccharide-induced acute injury. Mol Endocrinol 26:27–36

    Article  PubMed  CAS  Google Scholar 

  37. Pini A, Viappiani S, Bolla M et al (2012) Prevention of bleomycin-induced lung fibrosis in mice by a novel approach of parallel inhibition of cyclooxygenase and nitric-oxide donation using NCX 466, a prototype cyclooxygenase inhibitor and nitric-oxide donor. J Pharmacol Exp Ther 341:493–499

    Article  PubMed  CAS  Google Scholar 

  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  39. Masini E, Bani D, Vannacci A et al (2005) Reduction of antigen-induced respiratory abnormalities and airway inflammation in sensitized guinea pigs by a superoxide dismutase mimetic. Free Radic Biol Med 39:520–531

    Article  PubMed  CAS  Google Scholar 

  40. Selman M, King TE, Pardo A et al (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 134:136–151

    Article  PubMed  CAS  Google Scholar 

  41. Dancer RC, Wood AM, Thickett DR (2011) Metalloproteinases in idiopathic pulmonary fibrosis. Eur Respir J 38:1461–1467

    Article  PubMed  CAS  Google Scholar 

  42. Denney L, Byrne AJ, Shea TJ et al (2015) Pulmonary epithelial cell-derived cytokine TGF-β1 is a critical cofactor for enhanced innate lymphoid cell function. Immunity 43:945–958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Byrne AJ, Maher TM, Lloyd CM (2016) Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease? Trends Mol Med 22:303–316

    Article  PubMed  CAS  Google Scholar 

  44. Pechkovsky DV, Prasse A, Kollert F et al (2010) Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin Immunol 137:89–101

    Article  PubMed  CAS  Google Scholar 

  45. Li M, Krishnaveni MS, Li C et al (2011) Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J Clin Invest 121:277–287

    Article  PubMed  CAS  Google Scholar 

  46. Xaubet A, Marin-Arguedas A, Lario S et al (2003) Transforming growth factor-beta1 gene polymorphisms are associated with disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 168:431–435

    Article  PubMed  Google Scholar 

  47. Khalil N, Parekh TV, O’Connor R et al (2001) Regulation of the effects of TGF-beta 1 by activation of latent TGF-beta 1 and differential expression of TGF-beta receptors (T beta R-I and T beta R-II) in idiopathic pulmonary fibrosis. Thorax 56:907–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ranchoux B, Antigny F, Rucker-Martin C et al (2015) Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 131:1006–1018

    Article  PubMed  CAS  Google Scholar 

  49. Piera-Velazquez S, Mendoza FA, Jimenez SA (2016) Endothelial to Mesenchymal Transition (EndoMT) in the pathogenesis of human fibrotic diseases. J Clin Med 5:E45

    Article  PubMed  CAS  Google Scholar 

  50. Jain R, Shaul PW, Borok Z, Willis BC (2007) Endothelin-1 induces alveolar epithelial-mesenchymal transition through endothelin type A receptor-mediated production of TGF-beta1. Am J Respir Cell Mol Biol 37:38–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rosenbloom J, Mendoza FA, Jimenez SA (2013) Strategies for anti-fibrotic therapies. Biochim Biophys Acta 1832:1088–1103

    Article  PubMed  CAS  Google Scholar 

  52. Ahmedat AS, Warnken M, Seemann WK et al (2013) Pro-fibrotic processes in human lung fibroblasts are driven by an autocrine/paracrine endothelinergic system. Br J Pharmacol 168:471–487

    Article  PubMed  CAS  Google Scholar 

  53. Wermuth PJ, Li Z, Mendoza FA, Jimenez SA (2016) Stimulation of transforming growth factor-β1-induced endothelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (ET-1): a novel profibrotic effect of ET-1. PLoS One 11:e0161988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Racke K, Fuhrmann M, Juergens UR et al (2016) Over expression of endothelin-1 (ET-1) in lung fibroblasts (LFb) from patients with pulmonary arterial hypertension (PAH), evidence for loss of inhibitory control. Eur Resp J 48:PA1820

    Google Scholar 

Download references

Acknowledgements

This study has been supported by a scientific grant from Intercept Pharmaceuticals (New York, NY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vignozzi.

Ethics declarations

Conflict of interest

PC, SF, ES, AM, IC, CC, AP, GBV, MM and LV have no conflicts of interest. LA is a scientific consultant for Intercept Pharmaceuticals.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comeglio, P., Filippi, S., Sarchielli, E. et al. Therapeutic effects of obeticholic acid (OCA) treatment in a bleomycin-induced pulmonary fibrosis rat model. J Endocrinol Invest 42, 283–294 (2019). https://doi.org/10.1007/s40618-018-0913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-018-0913-1

Keywords

Navigation